
1

1

Introduction

1.1 Introduction to Iterative Learning Control

Iterative learning control (ILC), as an effective control strategy, is designed to improve
current control performance for unpredictable systems by fully utilizing past control
experience. Specifically, ILC is designed for systems that complete tasks over a fixed
time interval and perform them repeatedly. The underlying philosophy mimics the
human learning process that “practice makes perfect.” By synthesizing control inputs
from previous control inputs and tracking errors, the controller is able to learn from
past experience and improve current tracking performance. ILC was initially developed
by Arimoto et al. (1984), and has been widely explored by the control community since
then (Moore, 1993; Bien and Xu, 1998; Chen and Wen, 1999; Longman, 2000; Norrlof
and Gunnarsson, 2002; Xu and Tan, 2003; Bristow et al., 2006; Moore et al., 2006; Ahn
et al., 2007a; Rogers et al., 2007; Ahn et al., 2007b; Xu et al., 2008; Wang et al., 2009,
2014).

Figure 1.1 shows the schematic diagram of an ILC system, where the subscript i
denotes the iteration index and yd denotes the reference trajectory. Based on the input
signal, ui, at the ith iteration, as well as the tracking error ei = yd − yi, the input ui+1
for the next iteration, namely the (i + 1)th iteration, is constructed. Meanwhile, the
input signal ui+1 will also be stored into memory for use in the (i + 2)th iteration. It is
important to note that in Figure 1.1, a closed feedback loop is formed in the iteration
domain rather than the time domain. Compared to other control methods such as
proportional-integral-derivative (PID) control and sliding mode control, there are a
number of distinctive features about ILC. First, ILC is designed to handle repetitive
control tasks, while other control techniques don’t typically take advantage of task
repetition—under a repeatable control environment, repeating the same feedback
would yield the same control performance. In contrast, by incorporating learning, ILC
is able to improve the control performance iteratively. Second, the control objective is
different. ILC aims at achieving perfect tracking over the whole operational interval.
Most control methods aim to achieve asymptotic convergence in tracking accuracy
over time. Third, ILC is a feedforward control method if viewed in the time domain.
The plant shown in Figure 1.1 is a generalized plant, that is, it can actually include a
feedback loop. ILC can be used to further improve the performance of the generalized
plant. As such, the generalized plant could be made stable in the time domain, which
is helpful in guaranteeing transient response while learning takes place. Last but not

Iterative Learning Control for Multi-agent Systems Coordination, First Edition.
Shiping Yang, Jian-Xin Xu, Xuefang Li, and Dong Shen.
© 2017 John Wiley & Sons Singapore Pte. Ltd. Published 2017 by John Wiley & Sons Singapore Pte. Ltd.

2 ILC for Multi-agent Systems Coordination

Plant

Memory

Memory

+–

++
Controller

ui

ui+1

yi+1
yd

yi

Figure 1.1 The framework of ILC.

least, ILC is a partially model-free control method. As long as an appropriate learning
gain is chosen, perfect tracking can be achieved without using a perfect plant model.

Generally speaking, there are two main frameworks for ILC, namely
contraction-mapping (CM)-based and composite energy function (CEF)-based
approaches. A CM-based iterative learning controller has a very simple structure and is
easy to implement. A correction term in the controller is constructed from the output
tracking error; to ensure convergence, an appropriate learning gain is selected based
on system gradient information in place of an accurate dynamic model. As a partially
model-free control method, CM-based ILC is applicable to non-affine-in-input sys-
tems. These features are highly desirable in practice as there are plenty of data available
in industry processes but there is a shortage of accurate system models. CM-based
ILC has been adopted in many applications, for example X-Y tables, chemical batch
reactors, laser cutting systems, motor control, water heating systems, freeway traffic
control, wafer manufacturing, and so on (Ahn et al., 2007a). A limitation of CM-based
ILC is that it is only applicable to global Lipschitz continuous (GLC) systems. The GLC
condition is required by ILC in order to form a contractive mapping, and rule out the
finite escape time phenomenon. In comparison, CEF-based ILC, a complementary
approach to CM-based ILC, applies a Lyapunov-like method to design learning rules.
CEF is an effective method to handle locally Lipschitz continuous (LLC) systems,
because system dynamics is used in the design of learning and feedback mechanisms.
It is, however, worthwhile pointing out that in CM-based ILC, the learning mechanism
only requires output signals, while in CEF-based ILC, full state information is usually
required. CEF-based ILC has been applied in satellite trajectory keeping (Ahn et al.,
2010) and robotic manipulator control (Tayebi, 2004; Tayebi and Islam, 2006; Sun et al.,
2006).

This book follows the two main frameworks and investigates the multi-agent coordi-
nation problem using ILC. To illustrate the underlying idea and properties of ILC, we
start with a simple ILC system.

Consider the following linear time-invariant dynamics:

ẋi(t) = axi(t) + ui(t), t ∈ [0,T], (1.1)

where i is the iteration index, a is an unknown constant parameter, and T is the trial
length. Let the target trajectory be xd(t), which is generated by

ẋd(t) = axd(t) + ud(t), t ∈ [0,T], (1.2)

with ud(t) is the desired control signal. The control objective is to tune ui(t) such
that without any prior knowledge about the parameter a, the tracking error

Introduction 3

ei(t) ≜ xd(t) − xi(t) can converge to zero as the iteration number increases, that
is, limi→∞ ei(t) = 0 for t ∈ [0,T].

We perform the ILC controller design and convergence analysis for this simple control
problem under the frameworks of both CM-based and CEF-based approaches, in order
to illustrate the basic concepts in ILC and analysis techniques. To restrict our discussion,
the following assumptions are imposed on the dynamical system (1.1).

Assumption 1.1 The identical initialization condition holds for all iterations, that is,
xi(0) = xd(0), ∀i ∈ ℕ.

Assumption 1.2 For ∀xd(t), t ∈ [0,T], there exists a ud(t), t ∈ [0,T] such that ui(t) →
ud(t) implies xi(t) → xd(t), t ∈ [0,T].

1.1.1 Contraction-Mapping Approach

Under the framework of CM-based methodology, we apply the following D-type updat-
ing law to solve the trajectory tracking problem:

ui+1 = ui + 𝛾 ėi, (1.3)

where 𝛾 > 0 is the learning gain to be determined. Our objective is to show that the ILC
law (1.3) can converge to the desired ud, which implies the convergence of the tracking
error ei(t), t ∈ [0,T] as i increases.

Define Δui = ud − ui. First we can derive the relation

Δui+1 = ud − ui+1

= ud − ui − 𝛾 ėi

= Δui − 𝛾 ėi. (1.4)

Furthermore, the state error dynamics is given by

ėi = ẋd − ẋi

= (axd + ud) − (axi + ui)
= aei + Δui. (1.5)

Combining (1.4) and (1.5) gives:

Δui+1 = Δui − 𝛾 ėi

= (1 − 𝛾)Δui − a𝛾ei. (1.6)

Integrating both sides of the state error dynamics and using Assumption 1.1 yields

ei(t) = ei(0) + ∫
t

0
ea(t−𝜏)Δui(𝜏)d𝜏

= ∫
t

0
ea(t−𝜏)Δui(𝜏)d𝜏. (1.7)

Then, substituting (1.7) into (1.6), we obtain

Δui+1 = (1 − 𝛾)Δui − a𝛾 ∫
t

0
ea(t−𝜏)Δui(𝜏)d𝜏. (1.8)

4 ILC for Multi-agent Systems Coordination

Taking 𝜆-norm on both sides of (1.8) gives

|Δui+1|𝜆 ≤ |1 − 𝛾||Δui|𝜆 + a𝛾 1 − e−(𝜆−a)T

𝜆 − a
|Δui|𝜆

≜ 𝜌1|Δui|𝜆, (1.9)

where 𝜌1 ≜ |1 − 𝛾| + a𝛾 1−e−(𝜆−a)T

𝜆−a
, and the 𝜆-norm is defined as

|Δui+1|𝜆 = sup
t∈[0,T]

e−𝜆t|Δui+1(t)|.
The 𝜆-norm is just a time weighted norm and is used to simplify the derivation. It will

be formally defined in Section 1.4.
If |1 − 𝛾| < 1 in (1.9), it is possible to choose a sufficiently large 𝜆 > a such that 𝜌1 < 1.

Therefore, (1.9) implies that limt→∞ |Δui|𝜆 = 0, namely limt→∞ ui(t) = ud(t), t ∈ [0,T].

1.1.2 Composite Energy Function Approach

In this subsection, the ILC controller will be developed and analyzed under the frame-
work of CEF-based approach. First of all, the error dynamics of the system (1.1) can be
expressed as follows:

ėi(t) = −axi + ẋd − ui, (1.10)
where xd is the target trajectory.

Let k be a positive constant. By applying the control law
ui = −kei + ẋd − âi(t)xi (1.11)

and the parametric updating law ∀t ∈ [0,T],
âi(t) = âi−1(t) + xiei, â−1(t) = 0, (1.12)

we can obtain the convergence of the tracking error ei as i tends to infinity.
In order to facilitate the convergence analysis of the proposed ILC scheme, we intro-

duce the following CEF:

Ei(t) =
1
2

e2
i (t) +

1
2 ∫

t

0
𝜙2

i (𝜏)d𝜏, (1.13)

where 𝜙i(t) ≜ âi − a is the estimation error of the unknown parameter a.
The difference of Ei is

ΔEi(t) = Ei − Ei−1

= 1
2

e2
i +

1
2 ∫

t

0
(𝜙2

i − 𝜙2
i−1)d𝜏 −

1
2

e2
i−1. (1.14)

By using the identical initialization condition as in Assumption 1.1, the error dynamics
(1.10), and the control law (1.11), the first term on the right hand side of (1.14) can be
calculated as

1
2

e2
i = ∫

t

0
eiėid𝜏

= ∫
t

0
ei(−ẋd + axi + ui)d𝜏

= ∫
t

0
(−𝜙ixiei − ke2

i)d𝜏. (1.15)

Introduction 5

In addition, the second term on the right hand side of (1.14) can be expressed as

1
2 ∫

t

0
(𝜙2

i − 𝜙2
i−1)d𝜏 =

1
2 ∫

t

0
(âi−1 − âi)(2a − 2âi + âi − âi−1)d𝜏

= ∫
t

0
(𝜙ixiei −

1
2

x2
i e2

i)d𝜏, (1.16)

where the updating law (1.12) is applied. Clearly, 𝜙ixiei appears in (1.15) and (1.16) with
opposite signs. Combining (1.14), (1.15), and (1.16) yields

ΔEi(t) = −k ∫
t

0
e2

i d𝜏 − 1
2 ∫

t

0
x2

i e2
i d𝜏 − 1

2
e2

i−1

≤ −1
2

e2
i−1 < 0. (1.17)

The function Ei is a monotonically decreasing sequence, hence is bounded if E0 is
bounded.

Now, let us show the boundedness of E0. For the linear plant (1.1) or in general GLC
plants, there will be no finite escape time, thus E0 is bounded. For local Lipschitz con-
tinuous plants, ILC designed under CEF guarantees there is no finite escape time (see
Xu and Tan, 2003, chap. 7), thus E0 is bounded. Hence, the boundedness of E0(t) over
[0,T] is obtained.

Consider a finite sum of ΔEi,
i∑

j=1
ΔEj =

i∑
j=1

(Ej − Ej−1) = Ei − E0, (1.18)

and apply the inequality (1.17); we have:

Ei(t) = E0(t) +
i∑

j=1
ΔEj

≤ E0(t) −
1
2

i∑
j=1

e2
j−1. (1.19)

Because of the positiveness of Ei and boundedness of E0, ei(t) converges to zero in a
pointwise fashion as i tends to infinity.

1.2 Introduction to MAS Coordination

In the past several decades, MAS coordination and control problems have attracted con-
siderable attention from many researchers of various backgrounds due to their potential
applications and cross-disciplinary nature. Consensus in particular is an important class
of MAS coordination and control problems (Cao et al., 2013). According to Olfati-Saber
et al. (2007), in networks of agents (or dynamic systems), consensus means to reach an
agreement regarding certain quantities of interest that are associated with all agents.
Depending on the specific application, these quantities could be velocity, position, tem-
perature, orientation, and so on. In a consensus realization, the control action of an agent
is generated based on the information received or measured from its neighborhood.

6 ILC for Multi-agent Systems Coordination

Since the control law is a kind of distributed algorithm, it is more robust and scalable
compared to centralized control algorithms.

The three main components in MAS coordination are the agent model, the informa-
tion sharing topology, and the control algorithm or consensus algorithm.

Agent models range from simple single integrator model to complex nonlinear
models. Consensus results on single integrators are reported by Jadbabaie et al. (2003),
Olfati-Saber and Murray (2004), Moreau (2005), Ren et al. (2007), and Olfati-Saber
et al. (2007). Double integrators are investigated in Xie and Wang (2005), Hong et al.
(2006), Ren (2008a), and Zhang and Tian (2009). Results on linear agent models can
be found in Xiang et al. (2009), Ma and Zhang (2010), Li et al. (2010), Huang (2011),
and Wieland et al. (2011). Since the Lagrangian system can be used to model many
practical systems, consensus has been extensively studied by means of the Lagrangian
system. Some representative works are reported by Hou et al. (2009), Chen and Lewis
(2011), Mei et al. (2011), and Zhang et al. (2014).

Information sharing among agents is one of the indispensable components for
consensus seeking. Information sharing can be realized by direct measurement from
on board sensors or communication through wireless networks. The information
sharing mechanism is usually modeled by a graph. For simplicity in the early stages
of consensus algorithm development, the communication graph is assumed to be
fixed. However, a consensus algorithm that is robust or adaptive to topology variations
is more desirable, since many practical conditions can be modeled as time-varying
communications, for example asynchronous updating, or communication link failures
and creations. As communication among agents is an important topic in the MAS
literature, various communication assumptions and consensus results have been inves-
tigated by researchers (Moreau, 2005; Hatano and Mesbahi, 2005; Tahbaz-Salehi and
Jadbabaie, 2008; Zhang and Tian, 2009). An excellent survey can be found in Fang and
Antsaklis (2006). Since graph theory is seldom used in control theory and applications,
a brief introduction to the topic is given in Appendix A.

A consensus algorithm is a very simple local coordination rule which can result in very
complex and useful behaviors at the group level. For instance, it is widely observed that
by adopting such a strategy, a school of fish can improve the chance of survival under
the sea (Moyle and Cech, 2003). Many interesting coordination problems have been for-
mulated and solved under the framework of consensus, for example distributed sensor
fusion (Olfati-Saber et al., 2007), satellite alignment (Ren and Beard, 2008), multi-agent
formation (Ren et al., 2007), synchronization of coupled oscillators (Ren, 2008b), and
optimal dispatch in power systems (Yang et al., 2013). The consensus problem is usually
studied in the infinite time horizon, that is, the consensus is reached as time tends to
infinity. However, some finite-time convergence algorithms are available (Cortex, 2006;
Wang and Hong, 2008; Khoo et al., 2009; Wang and Xiao, 2010; Li et al., 2011). In the
existing literature, most consensus algorithms are model based. By incorporating ILC
into consensus algorithms, the prior information requirement from a plant model can
be significantly reduced. This advantage will be shown throughout this book.

Introduction 7

1.3 Motivation and Overview

In practice, there are many tasks requiring both repetitive executions and coordination
among several independent entities. For example, it is useful for a group of satellites to
orbit the earth in formation for positioning or monitoring purposes (Ahn et al., 2010).
Each satellite orbiting the earth is a repeated task, and the formation task fits perfectly in
the ILC framework. Another example is the cooperative transportation of a heavy load
by multiple mobile robots (Bai and Wen, 2010; Yufka et al., 2010). In such kinds of task
implementation, the robots have to maneuver in formation from the very beginning to
the destination. The economic dispatch problem in power systems (Xu and Yang, 2013;
Yang et al., 2013) and formation control for ground vehicles with nonholonomic con-
straints (Xu et al., 2011) also fall in this category. These observations motivate the study
of multi-agent coordination control from the perspective of ILC.

As discussed in the previous subsection, the consensus tracking problem is an impor-
tant multi-agent coordination problem, and many other coordination problems can be
formulated and solved in this framework, such as the formation, cooperative search,
area coverage, and synchronization problems. We chose consensus tracking as the main
topic in this book. Here we briefly describe a prototype consensus tracking problem and
illustrate the concepts of distributed tracking error which are used throughout the book.
In the problem formulation, there is a single leader that follows a prescribed trajectory,
and the leader’s behavior is not affected by others in the network. There are many fol-
lowers, and they can communicate with each other and with the leader agent. However,
they may not know which one the leader is. Due to communication limitations, a fol-
lower is only able to communicate with its near neighbors. The control task is to design
an appropriate local controller such that all the followers can track the leader’s trajec-
tory. A local controller means that an agent is only allowed to utilize local information.
To illustrate these concepts, Figure 1.2 shows an example of a communication network.
(Please see Appendix A for a revision of graph theory.) Each node in the graph repre-
sents an agent (agents will be modeled by dynamic systems in later chapters). Edges in
the graph show the information flow. For instance, there is an edge starting from agent 2
and ending at agent 1, which means agent 1 is able to obtain information from agent 2.
In this example there are two edges ending at agent 1. This implies that agent 1 can uti-
lize the information received from agents 0 and 2. Let xi denote the variable of interest
for the ith agent, for instance, position, velocity, orientation, temperature, pressure, and
so on. The distributed error 𝜉1 for agent 1 is defined as

𝜉1 = (x0 − x1) + (x2 − x1).

The distributed error 𝜉1 will be used to construct the distributed learning rule.

Figure 1.2 Example of a network.
1 2

4 3

0

8 ILC for Multi-agent Systems Coordination

With this problem in mind, the main content of the book is summarized below.

1) In Chapter 2, a general consensus tracking problem is formulated for a group of
global Lipschitz continuous systems. It is assumed that the communication is fixed
and connected, and the perfect identical initialization condition (iic) constraint is
satisfied as well. A D-type ILC rule is proposed for the systems to achieve perfect
consensus tracking. By adoption of a graph dependent matrix norm, a local con-
vergence condition is devised at the agent level. In addition, optimal learning gain
design methods are developed for both directed and undirected graphs such that
the 𝜆-norm of tracking error converges at the fastest rate.

2) In Chapter 3, we investigate the robustness of the D-type learning rule against
communication variations. It turns out that the controller is insensitive to
iteration-varying topology. In the most general case, the learning controller is still
convergent when the communication topology is uniformly strongly connected
over the iteration domain.

3) In Chapter 4, the PD-type learning rule is proposed to deal with imperfect initial-
ization conditions as it is difficult to ensure perfect initial conditions for all agents
due to sparse information communication—hence only a few of the follower agents
know the desired initial state. The new learning rule offers two main features. On
the one hand, it can ensure controller convergence. On the other hand, the learning
gain can be used to tune the final tracking performance.

4) In Chapter 5, a novel input sharing learning controller is developed. In the existing
literature, when designing the learning controller, only the tracking error is incor-
porated in the control signal generation. However, if the follower agents can share
their experience gained during the process, this may accelerate the learning speed.
Using this idea, the new controller is developed for each agent by sharing its learned
control input with its neighbors.

5) In Chapter 6, we apply the learning controller to a formation problem. The for-
mation contains two geometric configurations. The two configurations are related
by a high-order internal model (HOIM). Usually the ILC control task is fixed. The
most challenging part of this class of problem is how to handle changes in config-
uration. By incorporating the HOIM into the learning controller, it is shown that,
surprisingly, the agents are still able to learn from different tasks.

6) In Chapter 7, by combining the Lyapunov analysis method and
contraction-mapping analysis, we explore the applicability of the P-type learning
rule to several classes of local Lipschitz systems. Several sufficient convergence
conditions in terms of Lyapunov criteria are derived. In particular, the P-type
learning rule can be applied to a Lyapunov stable system with quadratic Lyapunov
functions, an exponentially stable system, a system with bounded drift terms,
and a uniformly bounded energy bounded state system under control saturation.
The results greatly complement the existing literature. By using the results of this
chapter, we can immediately extend the results in Chapters 2–5 to more general
nonlinear systems.

7) In Chapter 8, the composite energy function method is utilized to design an adap-
tive learning rule to deal with local Lipschitz systems that can be modeled by system
dynamics that are linear in parameters. With the help of a special parameterization
method, the leader’s trajectory can be treated as an iteration-invariant parameter

Introduction 9

that all the followers can learn from local measurements. In addition, the initial rec-
tifying action is applied to reduce the effect of imperfect initialization conditions.
The method works for high-order systems as well.

8) Chapter 9 addresses the consensus problem of nonlinear multi-agent system (MAS)
with state constraints. A novel type of barrier Lyapunov function (BLF) is adopted
to deal with the bounded constraints. An ILC strategy is introduced to estimate the
unknown parameter and basic control signal. To address the consensus problem
comprehensively from both theoretical and practical viewpoints, five control
schemes are designed in turn: the original adaptive scheme, a projection-based
scheme, a smooth function based scheme as well as its alternative, and a dead-zone
like scheme. The consensus convergence and constraints guarantee are strictly
proved for each control scheme by using the barrier composite energy function
(BCEF) approach.

9) Lagrangian systems have wide applications in practice. For example, industry
robotic manipulators can be modeled as a Lagrangian system. In Chapter 10, we
develop a set of distributed learning rules to synchronize networked Lagrangian
systems. In the controller design, we fully utilize the inherent features of Lagrangian
systems, and the controller works under a directed acyclic graph.

10) In Chapter 11, we focus our attention on discrete-time system and present a gener-
alized iterative learning algorithm to solve an optimal power generation problem in
a smart grid. Usually the optimal power dispatch problem is solved by centralized
methods. Noticing that the optimal solution is achieved when the incremental costs
for all power generators are equal, if we consider the incremental cost as the vari-
able of interest, it may be possible to devise a distributed algorithm. Following this
idea and by virtue of the distributed nature of the consensus algorithm, a hierarchi-
cal two-level algorithm is developed. The new learning algorithm is able to find the
optimal solution, as well as taking power generator constraints and power line loss
into account.

1.4 Common Notations in This Book

The set of real numbers is denoted by ℝ, and the set of complex numbers is denoted
by ℂ. The set of natural numbers is denoted by ℕ, and i ∈ ℕ is the number of iteration.
For any z ∈ ℂ, ℜ(z) denotes its real part. For a given vector 𝐱 = [x1, x2, · · · , xn]T ∈ ℝn,

|𝐱| denotes any lp vector norm, where 1 ≤ p ≤ ∞. In particular, |𝐱|1 =
n∑

k=1
|xk|, |𝐱|2 =

√
𝐱T𝐱, and |𝐱|∞ = max

k=1,…,n
|xk|. For any matrix A ∈ ℝn×n, |A| is the induced matrix norm.

𝜌(A) is its spectral radius. Moreover, ⊗ denotes the Kronecker product, and Im is the
m × m identity matrix.

Let m[0,T] denote a set consisting of all functions whose mth derivatives are con-
tinuous on the finite-time interval [0,T]. For any function 𝐟 (⋅) ∈ [0,T], the supremum
norm is defined as ‖𝐟‖ = sup

t∈[0,T]
|𝐟 (t)|. Let 𝜆 be a positive constant, the time weighted

norm (𝜆-norm) is defined as ‖𝐟‖𝜆 = sup
t∈[0,T]

e−𝜆t|𝐟 (t)|.

