
Chapter 1
Introduction

This chapter provides a rudimentary introduction of iterative learning control (ILC)
and its basic formulation for both discrete-time and continuous-time systems, which
is followed by a review on recent developments of ILC with iteration-varying trial
lengths. At the end of this chapter, the structure/organization of thewholemonograph
is also presented.

1.1 Iterative Learning Control

In our daily life, almost every task is conducted by trial and error, which is the
inherent concept of learning. Indeed, it is learning that helps us to survive from
severe conditions in the ancient times and become stronger in handling with various
problems nowadays. The underlying philosophy of the human being learning process
is “practice makes perfect”. Human being can do things better and better after several
practices. For example, whenwe learn towrite a Chinese character in primary school,
our teacher always asks us to repeat the character many times. While repeating
the character, we are adjusting the writing positions step by step and the writing
performancewill be improved gradually. Another example is the basketball shooting.
Consider to learn to shoot the basketball from a fixed position, it might be difficult
for us to hit the basket at the first several trials since we have little knowledge about
the correct shooting angle and force. The hit ratio will be definitely increased if we
can learn from the failures and correct our behavior.

Learning is an important concept to human being, and it is interesting to find that
such a fundamental principle can be applied to control systems, which is the origin
of iterative learning control (ILC). ILC is designed for systems repeating a certain
task over a fixed time interval. In ILC, the current control input signal is generated by
previous input and output information as well as the tracking objective. As a result,
the control performance can be gradually improved as the iteration number increases.
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Fig. 1.1 ILC in iteration
domain
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Note that the term “iteration” may be replaced with “trial”, “batch”, and “cycle” in
the literature due to different backgrounds.

In contrast to other control methods, such as adaptive control and robust control,
ILC has several distinct features, which include (1) finite time horizon, (2) accurate
resetting condition, and (3) perfect repeating conditions including the system plant
and control objective.

The block diagram of ILC is shown in Fig. 1.1, where yd denotes the reference
trajectory. At the kth iteration, the input uk is fed to the plant so that the corresponding
output is yk and the tracking error is ek = yd − yk . This is a causal process. Since the
tracking error ek is nonzero, implying that the input uk is not good enough, the input
signal of the next iteration (i.e., the (k + 1)th iteration) should then be updated. The
control input signal uk+1 at the (k + 1)th iteration usually is constructed as a function
of uk and ek . In other words, the control input signal uk+1 is generated by previous
control information. Then, the newly generated input is fed to the plant for the next
iteration. Meanwhile, the input uk+1 is also stored into the memory for updating the
input for the (k + 2)th iteration. As a result, a closed-loop feedback is formed in the
iteration domain. A concise block diagram of the ILC principle is shown in Fig. 1.2,
which is common in many ILC papers and monographs.

As can be seen from the above figures, the main difference between ILC and the
conventional control methodologies is that ILC improves the control performance
along the iteration axis rather than the time axis. In other words, the control perfor-
mance is gradually improved as the iteration number increases to infinity, while the
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transient performance within an iteration is usually ignored. Meanwhile, ILC can be
combined with the conventional control methods to further enhance performance.
That is, we can employ the conventional control method as an inner control loop to
achieve an acceptable performance of the systems such as stability and then add ILC
as an outer control loop to further improve the tracking precision. This topic has also
been investigated in the literature.

As discussed before, ILC synthesizes the current control input signal from pre-
vious input and output information, while the exact system plant information is not
required. Actually, this is one of the major advantages of ILC. In other words, ILC
is a data-driven control method.

ILC has been proposed for a long time which can be tracked back to a US patent
[1] in 1967. In 1978, Uchiyama initialized a “repeating” method of correcting the
reference function by trial [2]. However, this paper was written in Japanese and failed
to attract wide attention in the community. The paper published by Arimoto et al. in
1984 opened the research of ILC [3]. Since then, numerous articles were published
on ILC. Detailed surveys on ILC can be found in [4–9].

1.2 Basic Formulation of ILC

Now, let us go through the basic formulation of ILC for both discrete-time and
continuous-time systems, which is followed by the conventional convergence
analysis.

1.2.1 Discrete-Time Case

Consider the following discrete time-invariant linear system

xk(t + 1) = Axk(t) + Buk(t),

yk(t) = Cxk(t),
(1.1)

where x ∈ Rn , u ∈ Rp, and y ∈ Rq denote the system state, input, and output, respec-
tively. Matrices A, B, and C are system matrices with appropriate dimensions.
t denotes an arbitrary time instant in an operation iteration, t = 0, 1, . . . , N , where
N is the length of the operation iteration. For simplicity, t ∈ [0, N ] is used in the
following. k = 0, 1, 2, . . . denote different iterations.

Since it is required that a given tracking task should be repeated, the initial state
needs to be reset at each iteration. The following is a basic reset condition, called
identical initialization condition (i.i.c.), which is common in ILC theory.

xk(0) = x0, ∀k. (1.2)
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The reference trajectory is denoted by yd(t), t ∈ [0, N ]. With regard to the reset
condition, it is usually required that yd(0) = y0 � Cx0. The control objective of ILC
is to design a proper update law for the input uk(t), so that the corresponding output
yk(t) can track yd(t) as closely as possible. To this end, for any t in [0, N ], we define
the tracking error as

ek(t) = yd(t) − yk(t). (1.3)

Then, the update law is a function of uk(t) and ek(t) to generate uk+1(t), whose
general form is as follows:

uk+1(t) = h(uk(·), . . . , u0(·), ek(·), . . . , e0(·)). (1.4)

When the above relationship depends only on the last iteration, it is called first-order
ILC update law; otherwise, it is called high-order ILC update law. Generally, to
achieve the algorithm simplicity, most update laws are of first order, i.e.,

uk+1(t) = h(uk(·), ek(·)). (1.5)

Additionally, the update law is usually linear. The simplest update law is as follows:

uk+1(t) = uk(t) + Kek(t + 1), (1.6)

where K is the learning gain matrix to be designed. In (1.6), uk(t) is the input of
current iteration, while Kek(t + 1) is the innovation term. The update law (1.6) is
called P-type ILC update law. If the innovation term is replaced by K (ek(t + 1) −
ek(t)), the update law is called D-type.

For system (1.1) and update law (1.6), a basic convergence condition is that K
satisfies

‖I − CBK‖ < 1. (1.7)

Then, one has ‖ek(t)‖ −−−→
k→∞ 0, where ‖ · ‖ denotes the matrix or vector norm.

From this condition, one can deduce that the design of K needs no information
with regard to the system matrix A, but requires information of the coupling matrix
CB. This fact demonstrates the advantage of ILC from the perspective that ILC
has little dependence on the system information A. Thus, ILC can handle tracking
problems that have more uncertainties.

Remark 1.1 From the formulation of ILC, one can see that the model takes the
classic features of a 2D system. That is, the system dynamics (1.1) and the up date
law (1.6) evolve along time and iteration axes, respectively.Many scholars havemade
contributions from this point of view and developed a 2D system-based approach,
which is one of the principal techniques for ILC design and analysis.
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Note that the operation length is limited by N , and is then repeated multiple times.
Thus, one could use the so-called lifting technique for discrete-time systems, which
implies lifting all of the inputs and outputs as supervectors,

Uk = [uT
k (0), uT

k (1), . . . , uT
k (N − 1)]T , (1.8)

Yk = [yTk (1), yTk (2), . . . , yTk (N )]T . (1.9)

Denote

G =

⎡
⎢⎢⎢⎣

CB 0 0 · · · 0
CAB CB 0 · · · 0

...
...

...
. . .

...

CAN−1B CAN−2B · · · · · · CB

⎤
⎥⎥⎥⎦ , (1.10)

then, we have
Yk = GUk + d, (1.11)

where
d = [(Cx0)

T , (CAx0)
T , . . . , (CAN−1x0)

T ]T . (1.12)

Similar to (1.8) and (1.9), define

Yd = [yTd (1), yTd (2), . . . , yTd (N )]T ,

Ek = (eTk (1), eTk (2), . . . , eTk (N ))T ,

then it leads to
Uk+1 = Uk + KEk, (1.13)

where K = diag{K , K , . . . , K }. By simple calculation, we have

Ek+1 = Yd − Yk+1 = Yd − GUk+1 − d

= Yd − GUk − GKEk − d

= Ek − GKEk

= (I − GK)Ek .

Therefore,we obtain the condition (1.7) that is sufficient to guarantee the convergence
of ILC. Actually, the lifting technique does not only help us to obtain the convergence
condition but also provides us with an intrinsic understanding of ILC. In the lifted
model (1.11), the time-domain evolutionary process within the operating iteration
has been integrated into G, whereas the relationship between adjacent iterations is
highlighted. That is, the lifted model (1.11) depends on the iteration axis only.

Remark 1.2 Note that the focus of ILC is how to improve the tracking performance
gradually along the iteration axis, as one can see from the design of the update law
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(1.13) and lifted model (1.11). Therefore, it would not cause additional difficulties
when the system is extended from the linear time-invariant case to the linear time-
varying case. This is because, for any fixed time, the updating process along the
iteration axis is a time-invariant case.

It is usually assumed that the reference trajectory yd(t) is realizable. That is, there
exists an appropriate initial state x0 and input ud(t) such that the expression (1.1)
still holds with the subscript k being replaced by d. In other words, Yd = GUd + d,
whereUd is defined in a similar manner as (1.8). Then, the discussion that the system
output converges to the reference trajectory, i.e., limk→∞ Yk = Yd , is equivalent to
the one that the system input converges to the objective input, i.e., limk→∞ Uk = Ud .
For the system with stochastic noises, this transformation of proof objective is more
convenient for convergence analysis.

Remark 1.3 One may be interested in the case that the reference trajectory is not
realizable. In other words, there is no control input producing the reference trajec-
tory; thus, entirely accurate tracking is impossible. Then, the design objective of
the ILC algorithm is no longer to guarantee asymptotically accurate tracking, but to
converge to the nearest trajectory of the given reference. Consequently, the tracking
problem has become an optimization problem. On the other hand, from the view-
point of practical applications, the reference trajectory is usually realizable; thus, the
assumption is not rigorous.

1.2.2 Continuous-Time Case

Let us consider the following linear continuous-time system:

ẋk(t) = Axk(t) + Buk(t),

yk(t) = Cxk(t),
(1.14)

where notations have similar meanings to the discrete-time case.
The control task is to drive the output yk to track the desired reference yd on a fixed

time interval t ∈ [0, T ] as the iteration number k increases. If the relative degree of
the system is one, an ILC scheme of Arimoto type can be given as

uk+1 = uk + Γ ėk, (1.15)

where ek(t) = yd(t) − yk(t) and Γ is the diagonal learning gain matrix. Similarly,
if the learning gain matrix satisfies

‖I − CBΓ ‖ < 1, (1.16)

then the control objective can be achieved, i.e., limk→∞ yk(t) → yd(t). Note that
the basic formula for selecting the learning gain matrix given in (1.16) requires
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no information about the system matrix A, which implies that ILC is effective for
uncertain system matrices.

Moreover, a “PID-like” update law can be formulated as

uk+1 = uk + Φek + Γ ėk + Ψ

∫
ekdt, (1.17)

where Φ, Γ , and Ψ are learning gain matrices. The high-order PID-like update law
can be formulated as

uk+1 =
n∑

i=1

(I − �)Pi uk+1−i + �u0 +
n∑

i=1

(
Φi ek+1−i + Γi ėk+1−i + Ψi

∫
ek+1−idt

)
, (1.18)

where
∑n

i=1 Pi = I .

1.3 ILC for Systems with Varying Trial Lengths

In traditional ILC, to achieve perfect tracking performance, some exactly repeating
conditions, such as identical trial length, identical initial condition, and iteration-
invariant learning target, are required. However, these iteration-invariant conditions
will often be violated in real-time applications due to unknown uncertainties or
unpredictable factors, which hinders practical applications of conventional ILC, and
thus motivate scholars to relax/remove the perfect repeating conditions in ILC. This
monograph will focus on ILC design when control systems have iteration-varying
trial lengths. In practice, sometimes it is difficult to ensure that the control system
repeats on a fixed time interval. For instance, when applying ILC in a functional elec-
trical stimulation (FES) for upper limb movement and gait assistance, it is found that
the operation processes end early for at least the first few passes due to safety consid-
erations [10]. The FES-induced foot motion and the associated variable-length-trial
problem are detailed in [11, 12], which clearly illustrate the violation of the identical-
trial-length assumption. Another example can be seen in the analysis of humanoid
and biped walking robots, which is characterized by periodic or quasi-periodic gaits
[13]. For analysis purpose, these gaits are divided into phases that are defined by the
time when the foot strikes the ground, and the duration of the resulting phases are
usually not the same from iteration to iteration. Furthermore, as can be found in [14],
a trajectory-tracking problem of a lab-scale gantry crane was investigated under the
framework of ILC. In this example, the trial lengths at different iterations might be
varying since authors defined that the learning process should be terminated if the
system output drift far away from the desired trajectory. Based on these observations,
it is interesting and valuable to investigate ILC with iteration-varying trial lengths.

To clarify the effect of varying trial lengths, one can refer to Fig. 1.3, where
Fig. 1.3a illustrates the complete trial lengthwith Td being the desired iteration length
while Fig. 1.3b–d demonstrates possible incomplete trial lengths. In other words, the
varying trial length problemhere indicates that the iterationmay endbefore its desired



8 1 Introduction

0 Td 0 Td

0 Td0 Td

(a) complete trial (b) incomplete trial

(c) incomplete trial (d) incomplete trial

Fig. 1.3 Illustration of varying trial lengths

time length but the tracking objective remains the same for all iterations. Therefore,
the major influence of this setting is that the latter part of the tracking information
is lost if the iteration ends early. As a result, emphasis of analysis should go to
the inherent effect of uncompleted operation part. Moreover, in this monograph, we
consider the varying length to be random with or without statistical knowledge, and
thus the specific convergence sense should be carefully considered.

There were some early research aiming to provide a suitable design and analysis
framework for varying-iteration-length ILC that formed the groundwork for subse-
quent investigations [10–14]. For example, based on the experimental verifications
and primary analysis of the convergence property given in [10–12], a systematic
proof of the monotonic convergence in different norm senses was elaborated in [15]
for linear systems with nonuniform trial lengths. In that paper, the necessary and suf-
ficient conditions for monotonic convergence were discussed, as well as other issues
including the controller design guidelines and influence of disturbances. However,
it is worthwhile to mention that authors did not provide an uniform framework on
ILC with iteration-varying trial lengths.

The first random model of varying-length iterations was proposed in [16] for
discrete-time systems, and it was then extended to continuous-time systems in [17].
In [16] and [17], a stochastic variable was used to represent the occurrence of the
output at each time instant and iteration, and it was then multiplied to the tracking
error, which denoted the actual information of the updating process. To compensate
for the information loss caused by randomlyvarying trial lengths, an iteration-average
operator of all historical data was introduced to the ILC algorithm in [16], whereas
in [17], this average operator was replaced by an iteration-moving-average operator
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to reduce the influence of very old data. Moreover, a lifted framework of ILC for
a discrete-time linear system was provided in [18] to avoid conservatism of the
conventional λ-norm-based analysis in [16, 17].

Note that all of the results in [16–18] obtained asymptotical convergence with
respect to the expected value, which is very weak for the control of stochastic mod-
els, and thus motivates scholars to seek a stronger convergence result in [19]. In
detail, the discrete-time linear system was revisited and the traditional P-type ILC
law was employed. The authors transformed the error evolution along the iteration
axis by modeling it as a switching system and then established the input error’s sta-
tistical properties (i.e., the mathematical expectations and covariances) in a recursive
form. The convergence in the mathematical expectation, mean square, and almost
sure senses was derived simultaneously. The results were then extended to a class of
affine nonlinear systems in [20] using different analysis techniques. A recent work
[21] further proposed two novel and improved ILC schemes based on the iteration-
moving-average operator, in which a random searching mechanism was additionally
introduced to collect useful information while avoiding redundant tracking informa-
tion from the past.

In addition, some extensions have also been reported. Nonlinear stochastic sys-
tems were taken into account in [22] with bounded disturbances. Nevertheless, a
Gaussian distribution of the variable pass length was required, which limits the
possible application range. In [23], the authors extended the method to discrete-time
linear systems with a vector relative degree. In this case, one needs to carefully select
the output data for the learning algorithms to function. The issue was also extended
to stochastic impulse differential equations in [24] and fractional order systems in
[25]. We would like to note that the convergence analyses derived in these papers
were primarily based on the mature contraction mapping method similar to [16]. A
recent progress [26] presented a deterministic convergence analysis if the full-length
learning occur any adjacent finite iterations.

In short, we can observe the following facts from the above literature. First, most
papers have focused on discrete-time linear systems such as those in [15, 16, 18,
19, 21, 23], mainly owing to the beneficial system structure and mature analysis
techniques for discrete random variables. The results on continuous-time systems,
originated from practical systems, are rather limited. Although nonlinear systems
were considered in [17, 20, 22], the globally Lipschitz continuous condition was
imposed on the nonlinear functions in these papers, which effectively transforms
the system to a linear system. Therefore, it is significant to consider removing the
globally Lipschitz continuous condition for continuous-time systems.

This advance was presented in a recent paper [27], where continuous-time param-
eterized nonlinear systems with nonlinear functions being locally Lipschitz continu-
ouswere taken into account. Adaptive learning controller consisting of a stabilization
feedback term and a compensation feedforward termwas proposed.A novelmodified
composite energy function (CEF)was definedwith the new concept of a virtual track-
ing error for the untrodden part of each iteration. This CEF allowed one to present
an explicit difference between adjacent iterations and thus facilitated the analysis.
Moreover, if partial structure information is available, the paper [28] presented two
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types of learning schemes: a mixing-type adaptive learning scheme and a hybrid-
type differential-difference learning scheme. The convergence was conducted using
similar idea of [27] with novel virtual tracking errors.

1.4 Structure of this Monograph

In this monograph, we concentrate on ILC for systems with varying trial lengths. Our
primary objective is to provide a systematic framework of the synthesis and analysis
of ILC algorithms. To this end, we will clarify the following aspects: the controller
design, the convergence analysis, and the influence evaluation of nonuniform trial
lengths. The investigation of this monograph would greatly help to understand ILC
with varying trial lengths, which is a specific type of incomplete information.

The visual structure of this monograph is shown in Fig. 1.4, where three different
divisions of the chapters can be observed.

First division: The main materials in this monograph are placed into two parts.
Part I including Chaps. 2–6 focuses on linear systems, for which the conventional
P-type algorithm can behave well. Part II including Chaps. 7–12 aims to provide
fruitful results for nonlinear systems, where direct and indirect learning schemes are
proposed.

Second division: Readers can also refer to the monograph according to discrete-
time and continuous-time types of system dynamics. In particular, Chaps. 2–6 and 8
present the design and analysis techniques for discrete-time systems and Chaps. 7,
8–12 are the counterpart for continuous-time systems. It should be mentioned that
the analysis for discrete time and continuous time are fairly different.

Part I 
Linear Syst.

Part II 
Nonlin. Syst.

Start

End
Averaging Switching λ-norm CEF

Discrete-time

Continuous-time

2D

Fig. 1.4 Structure of this monograph
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Third division: The monograph also provides a technical angle of the results.
Specifically, Chaps. 2–4 and 7 deeply discuss the averaging technique in controller
design. Chapter 5 gives a novel switching system approach for convergence analysis
of the conventional P-type scheme. Chapter 6 presents the two-dimensional Kalman-
filtering-based approach for stochastic systems. Chapters8 and 9 provide an in-depth
application of the λ-norm technique for analysis. Chapters10–12 comprehensively
show the definition and employment of CEF techniques for continuous-time nonlin-
ear systems.

The contents of each chapter can be summarized as follows:
Chapter2 presents a novel formulation and idea to address the tracking control

problem for discrete-time linear systems with randomly varying trial lengths. An
ILC scheme with an iteration-average operator is introduced, which thus mitigates
the requirement on classic ILC that all trial lengths must be identical.

Chapter3 also considers a class of discrete-time linear systems with randomly
varying trial lengths. However, in contrast to Chap.2, this chapter aims to avoid using
the traditional λ-norm in convergence analysis which may lead to a non-monotonic
convergence.

Chapter 4 proposes two novel ILC schemes for discrete-time linear systems with
randomly varying trial lengths. In contrast to Chaps. 2 and 3 that advocate to replace
the missing control information by zero, the proposed learning algorithms in this
chapter are equipped with a random searching mechanism to collect useful but avoid
redundant past tracking information, which could expedite the learning speed.

Chapter5 proceeds to a novel analysis technique for linear discrete-time systems,
which is called the switching system technique. In this technique, the iteration evo-
lution of the input error is formulated as a switching system. Then, the mean and
covariance of the associated randommatrices can be recursively computed along the
iteration axis, which paves a novel way for convergence analysis.

Chapter6 presents the two-dimensional technique for addressing the tracking
problem of linear discrete-time stochastic systems with varying trial lengths. The
Kalman filtering technique is applied to derive the recursive learning gain matrix
which guarantees the mean square convergence of the input error to zero. As a
consequence, the tracking error will converge asymptotically in mean square sense.

Chapter7 extends the idea on ILC design with randomly varying trial lengths
to nonlinear continuous-time dynamic systems. Different from Chaps. 2 and 3, this
chapter will employ an iterativelymoving average operator with fixedwindow length
into the ILC scheme.

Chapter8 considers the discrete-time nonlinear systems, which is different from
the continuous-time case in the previous chapter. In particular, the affine nonlinear
system is taken into account, where the nonlinear functions satisfy globally Lips-
chitz continuous condition. A novel technical lemma is also provided for the strict
convergence analysis in pointwise sense.

Chapter9 provides the first result on sampled-data control for continuous-time
nonlinear systemswith varying trial lengths. To deal with the iteration-varying length
problem,wepropose two sampled-data ILCschemes, a genericPD-type schemeand a
modified versionwithmoving average operator, based on themodified tracking errors
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that have been redefined when the trial length is shorter or longer than the desired
one. Sufficient conditions are derived rigorously to guarantee the convergence of the
nonlinear system at each sampling instant.

Chapter10 proposes a novel method for parameterized nonlinear continuous-
time systems with varying trial lengths. As opposed to the previous chapters, this
chapter is applicable to nonlinear systems that do not satisfy the globally Lipschitz
continuous condition. To solve the problem, the adaptive ILC schemes are adopted
in this chapter to learn the parameters and ensure an asymptotical convergence.
Moreover, this chapter introduces a novel CEF using newly defined virtual tracking
errors for proving the convergence.

Chapter11 proceeds to consider the continuous-time nonlinear systems with non-
parametric uncertainties, differing the parameterized systems in the previous chapter,
under nonuniform trial length circumstances. Three common types of nonparamet-
ric uncertainties are taken into account in sequence: norm-bounded uncertainty,
variation-norm-bounded uncertainty, and norm-bounded uncertainty with unknown
coefficients. The CEF defined in the previous chapter is employed for the asymptot-
ical convergence of the proposed schemes.

Chapter12 applies the CEF technique proposed in Chaps. 10 and 11 to uncertain
systems with two specific types of partial structure information. First, we consider
the case that the system uncertainty consists of two parts, a time-invariant part and
a time-varying part. A mixing-type adaptive learning scheme is derived, where the
time-invariant part and the time-varying part are learned in differential and difference
forms. Next, we move to consider the case that time-invariant and time-varying
system uncertainties cannot be directly separated. A hybrid form of the differential
and difference learning laws is proposed, where both differential and difference
learning mechanisms are integrated in a unified adaptive learning scheme to derive
the estimation of unknown parameters.

1.5 Summary

In this chapter, the introduction of ILC is provided first, which is followed by the
basic formulation of ILC for both discrete-time and continuous-time control systems.
In addition, a brief review of ILC with iteration-varying trial lengths is then given.
Lastly, the structure of the whole monograph is also presented.
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