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Abstract—This paper conducts a survey on iterative learn-
ing control (ILC) with incomplete information and associated
control system design, which is a frontier of the ILC field.
The incomplete information, including passive and active types,
can cause data loss or fragment due to various factors. Passive
incomplete information refers to incomplete data and information
caused by practical system limitations during data collection,
storage, transmission, and processing, such as data dropouts,
delays, disordering, and limited transmission bandwidth. Active
incomplete information refers to incomplete data and information
caused by man-made reduction of data quantity and quality
on the premise that the given objective is satisfied, such as
sampling and quantization. This survey emphasizes two aspects:
the first one is how to guarantee good learning performance
and tracking performance with passive incomplete data, and the
second is how to balance the control performance index and data
demand by active means. The promising research directions along
this topic are also addressed, where data robustness is highly
emphasized. This survey is expected to improve understanding of
the restrictive relationship and trade-off between incomplete data
and tracking performance, quantitatively, and promote further
developments of ILC theory.

Index Terms—Iterative learning control, incomplete informa-
tion, data robustness, data dropout, varying lengths, sampled
control, quantized control.

I. INTRODUCTION

MANY practical systems follow the same operation mode
where they repeatedly complete a given task in a finite

time interval. For instance, the industrial production process
generally consists of successive batches of production tasks;
that is, the system completes a production batch following
a given procedure within the desired time interval and then
repeats it again and again. For such systems that can be clearly
divided into successive operation batches, if the operation time
lengths of each batch are identical and the operation circum-
stances of different batches are similar, then we can fully
utilize the operation data and experience to adjust the action
strategy for the next batch. This basic concept of “learning”
motivates the proposal and developments of iterative learning
control (ILC), which is now an important branch of intelligent
control [1]. In other words, ILC is a typical control strategy
mimicking the learning process of the human being, of which
the pivotal idea is to continuously learn the inherent repetitive
factors of system operation processes based on various data
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from completed batches such that the tracking performance
is gradually improved. This control strategy imposes little
requirement on system information and thus is typically a data-
driven control methodology, which can effectively deal with
the traditional control challenges such as high-nonlinearity,
strong coupling, modeling difficulty, and tracking of high
precision.

After developments over three decades, ILC has resulted in
a number of valuable results in both theory and applications;
for details, see survey papers and special issues [2]–[7]. We
note that the invariance of system dynamics including identical
tracking reference, identical operation length, and identical
initial state is a basic requirement of ILC, for which the
proposed update law can reduce the invariance and improve
tracking performance. Recently, much effort has been devoted
to relax this requirement. For example, in [8], [9], attempts
have been made for the nonrepetitive uncertain system to
take into account essential limitations of ILC dealing with
nonrepetitive factors. The case of nonrepetitive parameters was
also explored in a recent paper [10] among others. Moreover,
scholars are working on novel analysis and synthesis approach-
es other than the conventional contraction mapping method,
which imposes some restrictive conditions on the systems. The
repetitive process based approach has shown its effectiveness
in [11]–[14], and ILC can be easily turned into a repetitive
process whose dynamics and control problem have been well
investigated. Various stability criteria have been studied in
[11]–[14] for different problems which can be applied to
derive fruitful results of ILC by suitable transformation. We
note that the 2D system based approach [15] and frequency
based approach [16] are both important synthesis methods for
deriving performance-guaranteed controller design of ILC. In
addition, it should be pointed out that, along with fast devel-
opments in theoretical analysis, the applications of ILC have
been greatly enlarged such as robotics [17], [18], dual-mode
flyback inverter [19], and stroke rehabilitation systems [20]. In
sum, ILC has gained significant progress for both theoretical
analysis and practical applications in the past decades.

In order to achieve excellent control performance, most
ILC literature depends on the acquisition and utilization of
full system information and operation data. That is, the data
employed by the learning algorithms are assumed to have
infinite-precision. To this end, we have to increase the quantity
and precision of sensors for complex systems to acquire
more accurate information, increase the network bandwidth
to transmit mass data, and increase the number of servers and
improve the computation ability to guarantee good execution
of complex algorithms. All of these inevitably increase the
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system burden and control cost. On the one hand, due to
various uncertainties, the practical systems would suffer data
dropout and loss during the operation, which results in ad-
ditional difficulty in acquiring complete information. On the
other hand, if we could efficiently reduce the acquisition and
computation of mass data, provided that the tracking precision
and control performance is decreased, we can not only reduce
the cost of hardware and software, but also increase opera-
tional efficiency and system robustness. In consideration of the
above two aspects, it is of great theoretical and practical signif-
icance to design data-driven ILC algorithms with incomplete
information such that a high quality of control performance is
achieved. We note that the influence of incomplete information
on the tracking performance of data-driven ILC is essentially a
robustness problem of ILC. It is worth pointing out that such
robustness problem is different from the traditional model-
based robustness problem. That is, the former emphasizes the
perspective of data, which focuses on the inherent restriction
between the incomplete information and control performance,
whereas the latter emphasizes the perspective of the model,
which concentrates on the robustness with respect to the
unmodeled dynamics.

In practical applications, there are various factors that can
lead to the incomplete information problem, including both
objective and subjective factors. To make our expression clear
to follow, we classify the incomplete information scenarios
into two categories: passive incomplete information and ac-
tive incomplete information. Passive incomplete information
refers to incomplete data and information caused by practi-
cal system limitations during data collection, storage, trans-
mission, and processing, such as sensor/actuator saturation,
data dropouts, communication delay, packet disordering, and
limited transmission bandwidth. This incomplete information
problem is common in networked control systems that are
widely employed in engineering implementations due to their
high flexibility and robustness. Active incomplete information
refers to incomplete data and information caused by man-made
reduction of data quantity and quality on the premise that the
specified control objective is satisfied, such as sampling and
quantization. By sampling, we acquire the operation data of
a continuous-time system with a specified frequency only and
skip the information between adjacent sampling time instants.
By quantizing, we transform a value interval as an integer
within a finite or infinite candidate set, which is common in the
conversion from analog signal to digital signal. Clearly, both
sampling and quantization can reduce the mass of data, which
reduces the burden in acquiring, storing, and transmitting and
increases the system operating efficiency. Therefore, it is of
great importance to investigate how incomplete information
influences control performance as well as determine how large
the influence is and how to overcome the influence.

We note that the control design and analysis with both
passive and active incomplete information have obtained many
results in traditional control methodologies, especially in the
field of networked control systems. However, ILC differs from
traditional control methodologies in that it considers dual-
evolution along both the time axis and iteration axis. The
kernel dynamics lie in the iteration-axis, which is essentially

different from the time-axis-based evolution of traditional sys-
tem dynamics. Consequently, the results in networked control
systems cannot be extended to ILC directly. Indeed, in ILC
field, related results are very few and there are many open
problems. Moreover, for learning control with incomplete in-
formation, it is most important to consider the data robustness
of incomplete information and the associated overall design
of the control systems; that is, it is important to understand
the inherent restriction between incomplete information and
control performance in a novel framework.

This paper is devoted to providing a survey of ILC with
incomplete information, where we address the recent progress
on ILC with passive incomplete information such as data
dropouts, communication delays, and iteration-varying length,
as well as with active incomplete information such as sampling
and quantization. We will give a research framework for
various incomplete information problems from the perspective
of design and analysis techniques. Moreover, we provide a
primary discussion on the data robustness and related topics in
ILC with incomplete information. It is expected that the survey
can help the reader to grasp the overall view of this topic and
comprehend the fundamental techniques. The structure of the
overview is shown in Fig. 1. We note that, to some extent,
terminal ILC and point-to-point ILC can be regarded as a
type of incomplete information. The methods for this issue
have been well reviewed in [5] and thus will not be repeated
here.

The rest of this paper is arranged as follows. Section II
gives the basic formulation, design and analysis techniques,
and primary convergence results of ILC. In Section III, the
recent progress on ILC with passive incomplete information
is discussed, where the issues of random data dropouts, com-
munication delays and limits, and iteration-varying lengths are
elaborated, respectively. In Section IV, we proceed to review
the progress on ILC with active incomplete information, where
the sampling and quantization issues are emphasized. The data
robustness and promising research directions are expounded in
Section V. Section VI concludes the paper with remarks.

Notations: Throughout the paper, we use k and t to denote
the iteration index and time index, respectively. ‖ ·‖ denotes a
unspecified but well-defined norm of a vector or matrix. P(·)
denotes the probability of its indicated event and E denotes the
mathematical expectation of the indicated random variable.

II. ILC BACKGROUNDS

In this section, we provide the basic formulation of ILC
as well as the primary design and analysis techniques. To
this end, we first propose the essential principle of ILC. In
particular, the fundamental idea of ILC is to improve the
tracking performance for a given reference along the iteration
axis. The main concept of networked ILC is shown in Fig. 2,
where yd denotes the reference trajectory. At the kth iteration,
the input uk is fed to the plant and the corresponding system
output is denoted by yk. Generally, uk is not good enough and
therefore, the tracking error at the kth iteration ek = yd − yk
is nonzero. In this case, the input for the next iteration (i.e.,
the (k + 1)th iteration) is constructed as a function of the
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Fig. 1. Main structure of the overview.

input and tracking error of previous iterations, although it is
usually specified as a linear combination for the algorithm’s
simplicity. Then, the newly generated input uk+1 is transmitted
to the plant and stored in the memory for subsequent updating.
Consequently, a closed-loop feedback is formed along the
iteration axis. In other words, ILC can be viewed as an
iteration-based feedback control methodology. In addition, the
system should be repeatable; that is, the given tracking task is
iteration-invariant, the system can be reset to the same initial
state, and the operation process is completed in the same time
interval. In other words, repetition is the inherent requirement
for learning systems.

Fig. 2. Framework of networked ILC.

Now we proceed to the basic formulation of ILC according
to the discrete-time system. Consider the following discrete-
time linear time-invariant system

xk(t +1) = Axk(t)+Buk(t),

yk(t) =Cxk(t),
(1)

where xk(t)∈Rn, uk(t)∈Rp, and yk(t)∈Rq denote the system
state, input, and output, respectively. The subscript k denotes
the iteration index, and t labels the time instant in an iteration
with t = 0,1, · · · ,N, where N is the iteration length. Matrices
A, B, and C are system matrices with appropriate dimensions.

If we append the subscript t to these matrices, i.e., At , Bt , and
Ct , the system turns into time-varying case.

We denote the reference trajectory as yd(t), t = 0,1, · · · ,N.
The general control objective for ILC is to seek a suitable
updating algorithm such that the generated input sequence can
drive the corresponding output yk(t) to track yd(t) asymptoti-
cally as the iteration number k increases.

We assume the initial state to be reset to the desired one at
each iteration, which is the well-known identical initialization
condition (i.i.c.). That is, xk(0) = x0, ∀k, where x0 satisfies
yd(0) = Cx0. If such condition is not satisfied, it leads to an
initial-state-shift problem, which has been deeply studied in
ILC. A most common case is called bounded uncertain initial
state assumption; that is, the initial state xk(0) locates in a
small neighborhood of the desired one, i.e., ‖xk(0)−x0‖ ≤ ε ,
where ‖ · ‖ denotes some predefined norm.

Note that the correction mechanism of ILC is to employ
the tracking error information of previous iterations to ad-
just the input signal. To this end, denote the tracking error
ek(t) = yd(t)− yk(t), ∀t. Then, the updating algorithm for
generating uk+1(t) is actually a function of previous inputs
uk(t) and errors ek(t), of which the general form is

uk+1(t) = h(uk(·), · · · ,u0(·),ek(·), · · · ,e0(·)), (2)

where h(·) is a function to be designed in practical application-
s. When the update depends only on the information of the last
iteration, it is called a first-order ILC update law; otherwise,
it is called a high-order ILC update law. To save memory size
and enhance the operation efficiency, most ILC update laws
are of first-order, i.e.,

uk+1(t) = h(uk(·),ek(·)).

Additionally, the update law is usually linear for simplicity. A
simple but common update law is as follows,

uk+1(t) = uk(t)+Kek(t +1), (3)

where K is the learning gain matrix and also the designed
parameter. In (3), uk(t) can be viewed as the current input
command, while Kek(t+1) is the innovation term. The update
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law (3) is called P-type. If the innovation term is replaced by
K[ek(t +1)− ek(t)], the update law is called D-type.

For system (1) and update law (3), a basic convergence
condition on K is that the following inequality is fulfilled,

‖I−CBK‖< 1,

where I denotes the unity matrix. Then, we have ‖ek(t)‖→ 0
as k → ∞. This condition can be easily derived from the
lifted formulation in the following. We observe from this
condition that the system matrix A is not involved in the above
convergence condition, which originates from the essential
update mechanism of ILC. It also reveals that ILC can handle
more system unknowns for a precise tracking task.

For discrete-time ILC, the lifting technique is a useful tool
to transform the two-axis-based evolution dynamics into one-
axis-based evolution dynamics. To see this point, considering
system (1) and learning law (3) and noting that the iteration
length is N, we define

Uk = [uT
k (0),u

T
k (1), · · · ,uT

k (N−1)]T ,

Yk = [yT
k (1),y

T
k (2), · · · ,yT

k (N)]T ,

as the lifted supervectors of input and output at the kth
iteration, respectively. Denote

G =


CB 0 0 · · · 0

CAB CB 0 · · · 0
...

...
...

. . .
...

CAN−1B CAN−2B · · · · · · CB

 ,
then we have

Yk = GUk +d,

where

d = [(CAx0)
T ,(CA2x0)

T , · · · ,(CANx0)
T ]T .

Similarly, we can define Yd = [yT
d (1),y

T
d (2), · · · ,yT

d (N)]T and
Ek = (eT

k (1),e
T
k (2), · · · ,eT

k (N))T , then it leads to

Uk+1 =Uk +KEk,

where K = diag{K,K, · · · ,K}. By simple calculation, one has

Ek+1 =Yd−Yk+1 = Yd−GUk+1−d
=Yd−GUk−GKEk−d
=Ek−GKEk

=(I−GK)Ek.

Consequently, noting that GK is a lower block-triangular ma-
trix with the diagonal blocks being CBK, we can clearly obtain
the above convergence condition ‖I−CBK‖ < 1. Moreover,
with lifting techniques, it is noted that the time instant variable
t has been removed from the new formulations; that is, the time
evolution dynamics of an iteration has been integrated into G,
whereas the relationship between adjacent iterations has been
highlighted. Indeed, the lifting technique has provided us an
intrinsic understanding of the principle of ILC.

At the end of this section, we remark that the asymptotical
tracking performance is derived according to the tracking error
ek(t) directly in the above statements. If we have additional as-
sumptions on the reference trajectory yd(t) that it is realizable

in the sense that there exists a unique desired input ud(t) such
that Yd =GUd +d, where Ud = [uT

d (0),u
T
d (1), · · · ,uT

d (N−1)]T ,
then the proof is usually conducted by showing Uk →Ud as
k→∞. For a system with stochastic noises, this transformation
is more convenient for convergence analysis. In sum, if the
existence of a unique desired input is guaranteed according to
the specified tracking reference, we can prove the asymptotical
convergence of the input sequence. The output convergence to
the desired reference is a direct corollary. If the uniqueness
of the desired input is not available, we can either prove the
convergence of the input sequence to the set of all possible
desired inputs or verify the convergence of the output to the
reference directly.

III. ILC WITH PASSIVE INCOMPLETE INFORMATION

In this section, we provide an in-depth survey of ILC
with passive incomplete information, where we concentrate
on random incomplete information scenarios such as random
data dropouts, communication delays and limits, and iteration-
varying lengths. The common factor of these scenarios is
that their information loss is due to practical conditions and
environments. We note that other hardware limitations such as
sensor/actuator saturation may also reduce the quality of data
and information; however, they are omitted in this paper as
they are generally deterministic.

A. Random Data Dropouts

From Fig. 2 it is seen that the measured output and generated
input are transmitted through networks. Due to data conges-
tion, limited bandwidth, and linkage fault, the data packet
may be lost during transmission. The data transmission has
two alternative states: successful transmission and loss. Thus,
the data dropout is usually described by a random binary
variable, say γk(t) for the data packet at time instant t of
the kth iteration. In particular, the variable γk(t) is set to 1
if the corresponding data packet is successfully transmitted,
and 0 otherwise. Indeed, whether the data dropout occurs
or not can be regarded as a switch that opens and closes
the network in a random manner. Generally, to describe
the random data dropout, we need to establish a suitable
mathematical model for the binary variable γk(t). Specifically,
we have the following three most common models.
• Random sequence model (RSM): For each time instant t,

the data dropout is random without assuming any certain
probability distribution, but there exists a positive integer
K ≥ 1 such that at least in one iteration the data packet
is successfully sent back during arbitrary successive K
iterations.

• Bernoulli variable model (BVM): The random variable
γk(t) is independent for different time instants t and
iteration number k. Moreover, γk(t) obeys a Bernoulli
distribution with

P(γk(t) = 1) = γ, P(γk(t) = 0) = 1− γ, (4)

where γ = Eγk(t) with 0 < γ < 1.
• Markov chain model (MCM): The random variable γk(t)

is independent for different time instants t. Moreover,
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for an arbitrary fixed t, the evolution of γk(t) along the
iteration axis follows a two-state Markov chain, of which
the probability transition matrix is

P =

[
P11 P10
P01 P00

]
=

[
µ 1−µ

1−ν ν

]
(5)

with 0 < µ, ν < 1, where P11 = P(γk+1(t) = 1 | γk(t) =
1), P10 = P(γk+1(t) = 0 | γk(t) = 1), P01 = P(γk+1(t) = 1 |
γk(t) = 0), P00 = P(γk+1(t) = 0 | γk(t) = 0).

We first remark on the inherent connections among the
above three models. Clearly, BVM is a special case of MCM
as MCM would convert into BVM when µ + ν = 1. RSM
differs from both BVM and MCM as it requires no probability
distribution or statistics property of the random variable γk(t).
However, compared with BVM and MCM, RSM pays the
price that the successive data dropout length is bounded. In
particular, both BVM and MCM admit arbitrary successive
data dropouts associated with a suitable probability of occur-
ring. Consequently, RSM cannot cover BVM/MCM and vice
versa. The range relationship of these models is shown in
Fig. 3. It is worth pointing out that RSM implies that the data
dropout is not totally stochastic. Moreover, BVM differs from
MCM because the data dropout occurs independently along
the iteration axis for BVM, while it occurs dependently for
MCM. This point can also explain why MCM is more general
than BVM.

Fig. 3. Data Dropout Models.

From the definition of RSM, we note that RSM only
requires an upper bound of successive data dropouts along
the iteration axis for every time instant t. In particular, it is
required the information packet to be received at least once
for any successive K iterations; that is, ∑

K−1
i=0 γk+i(t)≥ 1 for all

k ≥ 1, ∀t. Therefore, the maximum length of successive data
dropouts is K−1. It is clear that when K = 1 there is no data
dropout occurring and when K = 2 there is no successive data
dropout occurring. Moreover, the value of K is an index of
the data dropout level. However, it is not sufficient to depict
the influence of data dropouts, because K corresponds to the
worst case of data dropouts rather than the general case.

To clearly describe the average level of data dropouts
along the iteration axis, we introduce a concept called da-
ta dropout rate (DDR), which is defined as limn→∞ 1/n×[
∑

n
k=1
(
1− γk(t)

)]
. For RSM, we note that a larger K generally

corresponds to a higher DDR and vice versa; however, the
connection between K and DDR is not necessarily positively
correlated. In other words, the DDR is another important
index of the average level of data dropouts and it should be
additionally clarified as we assume no probability property of
RSM. For BVM, the mathematical expectation γ of the BVM

(see (4)) is closely related to the DDR in the light of the law
of large numbers; that is, DDR is equal to 1− γ . Specifically,
the data dropout is independent along the iteration axis, thus,
limn→∞ 1/n×

[
∑

n
k=1
(
1− γk(t)

)]
= 1−Eγk(t) = 1−γ . If γ = 0,

which implies that the network is completely broken down,
then no information can be received from the plant, and thus no
algorithm can be applied to improve the tracking performance.
If γ = 1, which implies that no data dropout occurs, then the
framework converts into the classical ILC problem. For MCM,
the transition probabilities µ and ν denote average levels of
retaining the same state for successful transmission and loss,
respectively. By solving the equation πP= π , where P is given
in (5), we have the stationary distribution π as follows,

π =

[
1−ν

2−µ−ν
,

1−µ

2−µ−ν

]
. (6)

Then, DDR for MCM is 1−µ

2−µ−ν
. In short, we can obtain the

DDR for both BVM and MCM as we have the additional
probability distribution of these two models.

Taking the recent research literature into account, we ob-
serve that the progress can be reviewed from five perspectives:
system types, data dropout models, dropout positions, update
schemes, and analysis techniques, as is shown in Fig. 4. In the
past decade, ILC under random data dropouts has been fully
developed in all the perspectives; however, there are still open
problems for further research.

Fig. 4. The research framework of ILC with data dropouts.

1) Analysis Techniques: For smooth reading, we first re-
view the analysis techniques and the related convergence
results, especially the convergence meanings in consideration
of the randomness of data dropouts besides optional stochastic
noises. We review papers from the research groups in this issue
to provide a basic outline of recent works.

Ahn et al provided earlier attempts to the ILC for linear
systems in the presence of data dropouts [21]–[23] using the
Kalman filtering based technique, which was first proposed
by Saab in [24]. The main difference among the contributions
lies in the descriptions of data dropouts. In particular, the
first paper [21] assumed that the whole output vector was
considered as a packet, whereas this assumption was relaxed
to the case that only partial information of an output vector
may suffer loss problem in [22]. Moreover, in [23] both data
dropouts and delayed control signals were taken into account.
In [24], the input was derived by optimizing the input error
covariance and thus the mean-square convergence of the input
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sequence was obtained. Therefore, [21]–[23] all contributed to
a mean-square convergence.

Bu et al contributed different research angle for this problem
in [25]–[29]. First, by using the exponential stability theory of
asynchronous dynamical systems, which was given by Hassibi
et al in [30], the convergence of both first- and high-order
update laws was established with an existence assumption
of certain quadratic Lyapunov functions. Such a technique is
not easy to extend to other systems and the authors used an
expectation-based transform technique to derive the conver-
gence for linear systems. In particular, in [26] the recursion of
the tracking errors along the iteration axis, where the random
data dropout variable was involved, eliminated the randomness
by taking mathematical expectation to both sides. As a result,
only the convergence in expectation sense was obtained. The
techniques were then extended to nonlinear systems in [27]
and an inequality of the input error rather than a recursion
was obtained due to the nonlinearity. Moreover, in [28], a
new H-∞ framework was defined with the help of lifting
techniques and resolved the ILC problem under the newly
introduced framework. In particular, an H-∞ performance
index along the iteration axis and the asymptotical convergence
were obtained and the design condition for learning gain
matrices was solved through LMI techniques. Furthermore,
in [29] the widely used 2D systems approach was revisited
for the case with data dropouts. Specifically, a 2D system
involving with dropout variables was derived and a mean-
square asymptotically stability technique for 2D systems [31]
was applied to deduce the convergence. Additionally, an LMI-
based controller design was also provided.

Liu and Ruan considered the problem using the traditional
contraction mapping method in [32]–[34]. In [32], both linear
and affine nonlinear systems were taken into account, where
the data dropouts were assumed to occur at both the output
and input sides. The recursion of the input error was first
taken with an absolute operator and expectation operator, and
then the convergence in expectation sense was derived using
a technical lemma on contraction with respect to all previous
iterations. As a result, the design condition for learning gains is
fairly restrictive. A similar problem was also addressed in [33]
following the same procedures of [32], where the difference
between the two papers was the renewal of output information.
When removing the data dropout at the input side, the results
for both intermittent and successive update algorithms were
also given in [34]. To recap, in these results, in order to allow
a general successive data dropouts along the iteration axis,
a restrictive convergence property for nonnegative sequences
was derived and employed, which in turn may limit its
applications.

Shen et al considered the random data dropouts for stochas-
tic systems in [35]–[42], where the stochastic approximation
was employed to derive the almost-sure and mean-square
convergence. First, Shen and Wang proposed the RSM for data
dropouts in [35] for both linear and nonlinear systems with
stochastic noises. The almost-sure convergence was obtained
by introducing a decreasing sequence to suppress the noise
influence and improve the input signal. However, in [35], the
control direction was assumed to be known prior, and this re-

striction was removed in [36], where a novel direction probing
mechanism was employed. When considering the BVM, [37],
[38] also addressed both intermittent and successive update
schemes with a strict almost-sure convergence analysis for
linear and nonlinear systems, respectively. Note that stochastic
noises are involved in the systems. Thus, the controller design
and convergence analysis are distinct from the existing related
literature. Detailed performance comparisons between the two
types of algorithms and for related design parameters were
also provided in [37], [38]. Moreover, the general data dropout
case, i.e., both networks at the output and input sides suffering
loss, was considered in [39]–[41] for deterministic linear
systems, stochastic linear systems, and nonlinear systems,
respectively. In these three papers, the data dropout was
only described as a Bernoulli variable without any further
restrictions on its successive dropouts. Note that the input fed
to the plant and the one generated at the learning controller
may be different due to the lossy network at the input side.
Thus, the asynchronism between the two inputs should be
well depicted. In fact, such asynchronism was modeled as
a Markov chain and then the almost-sure and mean-square
convergence were established in the papers. The first attempt
for data dropouts modeled by Markov chain was given in [42].
For both noise-free and stochastic linear systems, a unified
framework was established for the design and analysis of ILC
for three models, namely, RSM, BVM, and MCM. Both mean
square and almost sure convergence of the input sequence
to the desired input were strictly established. In short, the
stochastic approximation technique is successfully applied to
systems with stochastic noises and random data dropouts in
the above papers.

There are scattered results on this topic such as in [43]–[47].
In [43], the authors contributed a detailed analysis of the effect
of data dropouts. In particular, when only a single packet at the
output side or the input side was dropped, the fundamental in-
fluence of data dropouts on tracking performance was carefully
evaluated and revealed that neither a contraction nor expansion
arose. This technique was then extended in [44] to study the
general data dropout case; that is, networks at both output and
input sides suffer data dropouts. In [45], both data dropouts
and communication delays were jointly considered, where the
expectation operator and the traditional contraction mapping
technique with λ -norm were applied in sequence to show the
convergence in the expectation sense. In [46], the singular cou-
pled systems were investigated for a finite-iteration tracking
problem, where the basic contraction for tracking error was
established under suitable norms. In [47], the ILC problem
for multi-agent systems with finite-leveled quantization and
random packet losses was addressed, where the packet loss
occurring at the communication networks among agents was
modeled by BVM. We note that a decreasing sequence in [47],
which originated from the stochastic approximation theory,
ensures the asymptotical convergence.

To recap, the main techniques for addressing random data
dropouts are done by either eliminating the randomness by
taking mathematical expectation or projecting the problem into
a traditional analysis framework for stochastic systems using
Kalman filtering and stochastic approximation techniques. We
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should emphasize that the former method actually ignores the
specific effect but considers the averaged performance of data
dropouts.

2) System Types: Like the development processes of other
control methodologies, the research results for linear systems
are much more than that for nonlinear systems. We note that
ILC focuses on evolution along the iteration axis, whereas
the time-axis-based dynamics is less significant due to finite
operation length. Therefore, research for linear time-invariant
systems and linear time-varying systems have little distinction.
Results with linear systems include [21], [23], [25], [26], [28],
[29], [32], [33], [39], [42], [44], [45], most of which are the
discrete-time type.

There are some papers for nonlinear systems such as
[27], [32]–[34], [41], [43]. However, we note that nonlinear
systems are generally of the affine type. This is because
affine nonlinear systems separate the evolution influence of
the previous state and the current input with respect to time
instants. Moreover, the nonlinear functions are assumed to be
globally Lipschitz. That is, for a nonlinear function f (x), the
condition indicates ‖ f (x1)− f (x2)‖ ≤ k f ‖x1− x2‖, where k f
is a Lipschitz constant. This condition is imposed to facilitate
the use of Gronwall’s technical lemma [48], which is fairly
common in the convergence analysis of ILC for nonlinear
systems. One promising direction for reducing restrictions on
nonlinear functions is to introduce other convergence analysis
methods. The case of general nonlinear functions without
global Lipschitz condition is still of great significance both
in theory and for practical applications.

In addition, stochastic noises are also included in systems
in several papers including [22], [35]–[38], [40]. Specifically,
in [22], [35], [37], [40] both random systems disturbances and
measurement noises are assumed for linear systems, whereas
in [36], [38] only measurement noises are considered as the
involved systems are nonlinear. For systems with stochastic
noises, the techniques of stochastic control would play an
important role in the design and analysis. We also remark that
a few results on special systems are reported such as singular
systems [46] and multi-agent systems [47]. It is worth pointing
out that the ILC problem for special types of systems under
data dropouts have few reports.

3) Data Dropout Models: As we have clarified at the
beginning of the section, there are three models of random
data dropouts, namely, RSM, BVM, and MCM. The most
popular model is BVM, where data dropouts have a clear
probability distribution and good independence. Most ILC
papers adopt this model, including [21]–[23], [25]–[29], [32]–
[34], [37]–[41], [44]–[46]. However, a major issue in BVM
is the treatment of successive data dropouts where several
limitations are imposed in the existing literature. In particular,
the data dropout is independent for different time instants and
different iterations in BVM. Thus, it is natural that adjacent
data packets may be dropped simultaneously. In many existing
papers, in order to provide a specified data compensation,
additional requirements are imposed. For instance, in [27],
[43], the dropped packet was compensated for with a packet
one-time-instant back within the same iteration. Consequently,
a limitation arises where packets at adjacent time instants are

not allowed to drop within the same iteration. In [44]–[46]
the lost packet was compensated for with the packet at the
same time instant, but one-iteration back. Consequently, there
is no simultaneous data dropout at the same time instant across
any two adjacent iterations under this condition. Indeed, a
more suitable compensation mechanism for the lost packet
is to employ the packet at the same time instant from the
latest available iteration. In other words, say we find a packet,
yk(t), which is lost during the transmission. We may replace
it with the latest available packet from previous iterations, say
yτ(t), where τ < k. Clearly, yτ(t) is successfully transmitted
while yi(t) with τ + 1 ≤ i ≤ k− 1 are all lost. This general
compensation mechanism is investigated in [32]–[34], [37],
[38], [40].

There are quite a few papers on other models. In [35], [36]
the RSM was used for data dropouts. In this case, the statistical
property of data dropouts is removed and thus can vary along
the iteration axis. In other words, the distinct difference with
RSM is the removal of steady distribution assumptions on
data dropouts. In [42], a unified framework was proposed
for all the three models where MCM was first studied in the
ILC field. Moreover, the authors of [43] carefully analyzed
the effect of single packet loss. For multiple packet loss
case, a general discussion was given instead of strict analysis
and description. The authors claimed that the data dropout
level should be far smaller than 100% to ensure a satisfied
tracking performance. In short, the development of various
data dropout models other than BVM requires more effort
because the quantitative depiction of the relationship between
data dropouts and tracking performance is still unclear.

4) Dropout Positions: As is seen from Fig. 2, there are
two networks connecting the plant and the learning controller,
which are separated into different sites. One is at the mea-
surement side to transmit the output information back to the
learning controller. The other is at the actuator side to transmit
the generated input signal to the plant for the next operation
process. To facilitate convergence analysis, most papers only
assume data dropouts at the measurement side, while the
network at the actuator side is assumed to work well, as in
[21], [22], [25], [26], [28], [29], [35]–[38]. Although some
papers claimed that their results can be extended to the general
case that both networks suffer packet loss, it is actually not a
trivial extension.

In particular, when the network at the actuator side is
assumed to work well, i.e., all generated input signals can
be successfully transmitted to the plant, the computed control
generated by the learning controller and the actual control
fed to the plant are always the same. Thus, the input used
in the update algorithm is always equal to the actual control.
However, when the network at the actuator side is lossy, the
computed control may be lost during the transmission and
then the plant has to compensate for it with other available
signals. Consequently, the actual control may differ from the
computed control. In other words, there exists an additional
asynchronism between the computed control and the actual
control. This random asynchronism imposes extra difficulty
in addressing the data dropout problem since it is hard to
separate from evolution dynamics as an individual variable.
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TABLE I
CLASSIFICATION OF THE PAPERS ON ILC UNDER DATA DROPOUTS

Refs. System Type Dropout Model Dropout Position Update Algorithm Convergence
Linear Nonlinear RSM BVM MCM Output Input IUS SUS M.E. M.S. A.S. D.A.

[21] • • • • •
[22] • • • • •
[23] • • • • • •
[25] • • • • •
[26] • • • • •
[27] • • • • • •
[28] • • • • •
[29] • • • • •
[32] • • • • • • •
[33]∗ • • • • • • • •
[34] • • • • • • •
[35] • • • • • •
[36] • • • • •
[37] • • • • • •
[38] • • • • • •
[39]∗ • • • • • • • •
[40]∗ • • • • • • • •
[41]∗ • • • • • • •
[42] • • • • • • • •
[43] • • • • • •
[44]∗ • • • • • • •
[45] • • • • •
[46] • • • • •
[47] • • • • •

RSM: random sequence model, BVM: Bernoulli variable model, MCM: Markov chain model, IUS: intermittent update
scheme, SUS: successive update scheme, M.E.: mathematical expectation, M.S.: mean square, A.S.: almost sure, D.A.:
deterministic analysis
∗ the input update fed to the plant is of successive type and the input update at the learning controller is of intermittent
type.

As a matter of fact, it has been proven in [39]–[41] that
such asynchronism can be described by a Markov chain when
modeling the dropouts by BVM, which paves a novel way
to establish the convergence. Other papers considering the
general data dropout position problem include [27], [32]–[34]
where the randomness of the data dropout at the actuator
side is eliminated by taking mathematical expectation for
recursions of both input errors and tracking errors.

5) Update Schemes: There are two major update schemes
which can be referred to when designing the update algo-
rithms. One is event-triggering and the other one is iteration-
triggering. We provide a brief explanation of the schemes by
taking the algorithms in the learning controller as an example.
The principle of the first update scheme is as follows: if
the output information is successfully transmitted, then the
learning controller employs such information to generate a
new input signal; otherwise, the learning controller would
stop updating until the corresponding output information is
successfully transmitted in the subsequent iterations. In other
words, when the corresponding packet is lost, it is replaced by
0. Clearly, this updating scheme is event-triggering. We call
it an intermittent update scheme (IUS). The principle of the
other update scheme is as follows: if the output information is
successfully transmitted, then the learning controller employs
such information to generate the input, which is same as
the previous update scheme; if the output information is lost
during transmission, then the learning controller would employ
the iteration-latest available output information for generating
the input, which is different from the previous scheme. This
update scheme keeps working for all iterations no matter
whether the information is lost or not, so it is iteration-

triggering. We call it a successive update scheme (SUS).

When considering an unreliable network at the measure-
ment side, it has been shown that both IUS and SUS work well
for the learning controller, as shown in [37], [38]. It is worth
pointing out that a SUS outperforms an IUS when the DDR is
large, as it continuously improves the tracking performance.
When considering the unreliable network at the actuator side,
it is clear that the IUS scheme is not applicable. In other words,
the computed control packet which is lost cannot be simply
replaced by 0 as it would greatly damage the tracking per-
formance. That is, the lost input signal must be compensated
for with a suitable packet to maintain the operation process of
the plant. Clearly, the simple compensation mechanism is to
employ the latest available input from the previous iteration.
In such case, we may regard it as a SUS. As a matter of fact,
such mechanism for the input has been reported in [32]–[34],
[39]–[41]. From another viewpoint, we could regard an IUS as
a non-compensation type and a SUS as a simple compensation
type. Generally, a sufficient compensation for the dropped
data can effectively improve the tracking performance. Thus
the specific compensation mechanism is of great significance
according to particular problems, but related results are very
few.

We have classified the above literature on ILC under data
dropouts in Table I from the mentioned five perspectives. From
this table, it can be seen that the data dropout problem has been
deeply investigated from all perspectives. However, we note
that the research for MCM and its generalization is promising.
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B. Communication Delay and Limited Capacity

Besides random data dropouts, there are many other random
factors caused by limited communication capacity. Commu-
nication delay is one of them, which has been witnessed to
somewhat progress in the past decade. In earlier attempts [23],
[45], the time-delay within an iteration was discussed. Such a
delay was assumed to occur for the input signal and modeled
by a random matrix according to the lifted system in [23].
The Kalman-filtering-based stability analysis technique was
applied to derive an iteration-stability of the proposed update
law. In [45] the one-step delay was addressed such that the
packet could be transmitted on schedule or one-step later. A
Bernoulli random variable was used to describe a random
delay, of which the randomness was eliminated by taking
expectation in the convergence analysis.

The Bernoulli model was then employed in [49], [50]
for random one-iteration communication delay, where the
communication delay was assumed to occur at both the output
and input sides. That is, the output signal for updating the input
may come from either the current or previous iteration, and
obeys a simple Bernoulli distribution. Technically, the one-
iteration delay provides a certain deterministic property of the
communication delay, which allows us to construct a finite-
iteration contraction along the iteration axis. Indeed, in [49]
the error of the (k + 3)th iteration can be bounded linearly
by the error of the kth, (k + 1)th, and (k + 2)th iterations.
In [50] the authors derived an interesting condition on the
probability of the occurrence of communication delay. In
particular, assume the probabilities to be α and β for the
case where one-iteration communication delay occurs at the
output side and the input side. It is deduced in [50] that the
condition α+β−αβ < 0.5 should be fulfilled. In other words,
the probabilities of communication delay should be sufficiently
small. This condition may shed light on the development
of the inherent relationship between random communication
delay and tracking performance. However, more efforts are
needed to discover a quantitative description of the influence
of incomplete information on tracking performance.

The successive iteration-based communication delay was
considered in [51]. In particular, a large-scale system consist-
ing of several subsystems was considered in the paper, where
the communication between different subsystems suffered
random and possibly asynchronous communication delays due
to potentially different work efficiency among subsystems. The
communication delay was modeled similarly to the RSM given
in the last subsection and decentralized ILC algorithms were
constructed based on available information. However, due to
random successive communication delays, the memory was
assumed to have enough capacity such that the arrived data
can be well stored. An extreme case for the memory size is
that only the data of one iteration can be accommodated by
the memory. Clearly, it is the minimum buffer capacity to
ensure the learning process. Such a case was studied in [52],
where multiple communication constraints were considered
for networked nonlinear systems, including data dropouts,
communication delays, and packet disordering. In that paper,
a RSM was employed to describe the combined effect of the

multiple communication constraints. Both an IUS and a SUS
were applied to construct the learning algorithms. Compared
with [50], the restrictions on occurrence probability of commu-
nication delays were removed and successive communication
delays were allowed in the progress. However, we would
like to remark that the research on ILC with communication
delays has gained little attention from scholars compared
with that on ILC with data dropouts. The randomness of
uncertain communication delay may lead to a mismatch of
the input and tracking error in the update law (for example,
(3)). It is vital to figure out the effect of this mismatch
in convergence analysis and provide a data compensation
mechanism in control synthesis.

C. Iteration-Varying Lengths

In Subsection III-A, the data dropout is considered in-
dependently for different time instants, whereas in practical
applications, the data may be dropped dependently along the
time axis. In other words, the data dropouts at the former time
instants would have a direct influence on those at the later time
instants within the same iteration. For example, if one data
packet is dropped due to a linkage fault at some time instant,
then the following data of the iteration may be all dropped.
That is, to the learning controller, the iteration ends early.
It results in a typical problem, called the iteration-varying
length problem. This problem has been encountered in certain
biomedical application systems. For example, while applying
ILC in a functional electrical stimulation (FES) for upper
limb movement and gait assistance, it has been seen that the
operation processes end early for at least the first few passes
due to safety considerations because the output significantly
deviates from the desired trajectory [53]. The FES-induced
foot motion and the associated variable-length-trial problem
are detailed in [54] and [55], which clearly demonstrate the
violation of the identical-trial-length assumption typically used
in ILC. Another example can be seen in the analysis of
humanoid and biped walking robots, which feature periodic or
quasi-periodic gaits [56]. For analysis, these gaits are divided
into phases that are defined by the time at which the foot
strikes the ground, and the duration of the resulting phases
are usually not the same from iteration to iteration. A third
example can be found in [57], where the trajectory-tracking
problem for a lab-scale gantry crane was investigated. In this
example, the output was constrained to be within a small
neighborhood of the desired reference, because the iteration
would end if the output drifted outside the specified bound-
ary, thereby resulting in the varying-length iteration problem.
Whether caused by the communication limits or by the safety
consideration, iteration-varying length problem always results
in incomplete information problem for the learning process.

There were some early research attempts to provide a
suitable design and analysis framework for the iteration-
varying length problem that contributed to the groundwork for
subsequent investigations [53]–[57]. For example, based on ex-
perimental verifications and primary convergence analysis that
were given in [53]–[55], a systematic proof of the monotonic
convergence in different norm senses were further elaborated
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in [58]. In particular, necessary and sufficient conditions for
monotonic convergence were derived strictly by carefully ana-
lyzing the path property of the proposed algorithm. Moreover,
other issues including the controller design guidelines and
influence of disturbances were also discussed. However, no
specific formulation of iteration-varying length was imposed
in this framework as it concerned the contraction between
adjacent iterations.

The first random model of iteration-varying length was
proposed in [59] for discrete-time systems and then extended
to continuous-time systems in [60]. In the model, a binary
random variable was used to represent the occurrence of the
output at each time instant and each iteration; that is, the
random variable is equal to 1 if the output appears and 0
otherwise (similar to the model of data dropout). The variable
was then multiplied with the tracking error denoting the actual
information of the update process. To compensate for the
lost information, an iteration-average operator for averaging
all historical data was introduced to the ILC algorithm in
[59], whereas in [60], this average operator was replaced by
a moving-iteration-average operator to reduce the influence of
very old data. Both operators provide good compensation as
shown by the theoretical analysis and simulations. Moreover,
a lifted framework of ILC of a discrete-time linear system was
provided in [61] to avoid the conservatism of the conventional
λ -norm-based contraction analysis in [59], [60]. In these
papers, we note two distinct points that the asymptotical
convergence in mathematical expectation sense is derived and
the distribution of the introduced random variable is known to
the controller.

Stronger convergence results were given in [62] and [63]
for linear and nonlinear discrete-time systems, respectively. In
particular, the classical P-type ILC algorithm was employed
for the discrete-time linear system in [62], where the possi-
ble iteration length has finite cases. Next, the evolution of
lifted-error-vectors along the iteration axis was transformed
into a random switching system with finite switching states.
Consequently, the authors established recursive computation
formulas of such vectors’ statistics (i.e., the mathematical
expectations and covariances). The convergence in the mathe-
matical expectation, mean square, and almost sure senses were
derived simultaneously. In [63] the affine nonlinear system
was considered. It is clear that the lifting techniques cannot
be applied to such types of systems. As a result, a technical
lemma on the commutativity of the expectation operator and
the absolute-value operator was first created for paving a
novel way to derive the strong convergence. A recent work
[64] proposed two improved ILC schemes to fully utilize
the iteration-moving-average operator. Specifically, a searching
mechanism was introduced to collect useful information while
avoiding redundant tracking information from the past, so a
faster convergence speed was expected. In these contributions,
the probability distribution of the random length is not required
prior.

In addition, some extensions have also been reported in
the existing literature. Nonlinear stochastic systems were
investigated in [65], where the bounded disturbances were
included. The average-operator-based scheme similar to [59]

was improved by collecting all available information. Nev-
ertheless, we note that a Gaussian distribution of the vari-
able iteration length was assumed, which limits the possible
application range. In [66], the authors extended the method
to discrete-time linear systems with a vector relative degree.
Thus, we need to carefully select the output data for the
learning algorithms. In addition, the variable length issue
was extended to stochastic impulse differential equations in
[67] and fractional order systems in [68]. The sampled-data
control for continuous-time nonlinear systems was proposed in
[69], where both the generic PD-type and a modified PD-type
scheme were employed with suitable design conditions of the
learning matrices. We remark that the convergence analyses
derived in these papers were primarily based on the mature
contraction mapping method.

In short, as a special case of passive incomplete informa-
tion, the iteration-varying length problem has gained some
progress. However, the existing literature has witnessed the
following limitations. First, most papers considered discrete-
time systems so that the possible length has finite outcomes.
Second, the systems are limited to be linear or globally
Lipschitz nonlinear. Third, the average-operator-based design
of ILC controller is widely studied, which motivates us to
consider how to efficiently use the available information.
Novel analysis techniques are also of great interest to replace
the conventional contraction-mapping method. Additionally,
the randomly iteration-varying length problem can be regarded
as a special case of the data dropout problem; that is, the
former is a time-axis-based successive dropout case (from the
actual ending time instant to the desired ending time instant).
Therefore, the results in ILC with data dropouts can be applied
to deal with the varying length problem and vice versa.

IV. ILC WITH ACTIVE INCOMPLETE INFORMATION

In the previous section, we reviewed recent progress on
ILC with passive incomplete information. In the section, we
proceed to review the progress on ILC with active incomplete
information. In other words, we collect the papers where
information quality is intentionally reduced. Two major re-
duction actions are considered, namely, sampled-data ILC
and quantized ILC. The former case indicates that only the
signal at assigned time instants, rather than the whole time
interval, are available, and the latter case indicates that only the
assigned values rather than the precise values are available. By
sampling and quantization, we can heavily reduce the amount
of the data.

A. Sampled-Data ILC

In this subsection, we present a review of sampled-data
ILC from the perspective of research issues. Before that, we
first formulate the problem of sampled-data ILC, as shown in
Fig. 5. Let ∆T be the sampling period of the digital control
system and N∆T = T , where T is the iteration length and N is
the total sampling number within one iteration. For sampled-
data ILC, only information on the sampling time instants n∆T ,
0 ≤ n ≤ N, is available. The block diagram in Fig. 5 consists
of a sampler at the output side to generate sampled output and
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a holder at the input side to regain continuous signal for the
controlled plant.

Fig. 5. The research framework of Sampled-data ILC.

There are two primary problems associated with sampled-
data ILC: the behavior at the sampling instants and how
the interval performance (between sampling instants) is. To
be specific, the former aims to construct suitable learning
algorithms to guarantee convergence at the sampling instants,
and the latter focuses on quantitative analysis of the tracking
performance between different sampling instants and possible
solutions to reduce the tracking errors in the sampling interval.
Generally, the former problem is similar to discrete-time
ILC as they share the same design and analysis techniques.
However, the latter problem indeed makes sampled-data ILC
different from the traditional discrete-time systems.

Considering the system models, both linear and affine non-
linear systems without disturbances attract the most attention,
and both linear and affine nonlinear systems with bounded
disturbances have been under investigation, while the other
systems are of little consideration. The reference classification
is given in Table II. These papers are mainly written by several
research groups with different special interests. Therefore,
we review the publications by the research interests/groups.
In each category, four perspectives of the publications are
explored, i.e., the system model, the update scheme, the
convergence result, and the analysis techniques.

1) Frequency-Based Sampled-Data ILC: The frequency-
based design and analysis of sampled-data ILC are presented
in [70]–[73], where the kernel issue focuses on the fundamen-
tal analysis and synthesis of sampled-data theory in ILC.

Paper [70] presented a framework for the design and
analysis of sampled-data ILC in both time and frequency
domains. For a fundamental framework, the LTI system was
adopted, while P-type, D-type, D2-type, and general filter
algorithms were studied with deriving the sufficient conditions
for monotonic convergence. The relative degree issue between
the continuous-time system and its corresponding sampled-
data system was remarked upon. These theoretical results were
then experimentally verified by a piezoelectric motor in [71]
and some selection guidelines were also provided for practical
applications. In [72], a novel sampled-data ILC algorithm in
the frequency form was proposed for the extreme precision
motion tracking problem of a piezoelectric positioning stage.
The convergence condition and the robustness analysis under

the inverse model in the frequency field were expressed with
an experimental validation. It was shown that sampled-data IL-
C is better than conventional open-loop control and PI control.
This problem was extended in [73], where a sampled-data ILC
was added to a direct feedback control with both repeatable
and nonrepeatable components simultaneously. As verified by
experiment studies, this combination was demonstrated to have
an advantage in precise tracking and fast convergence speed.
In short, frequency-based design and analysis is an interesting
perspective for sampled-data ILC, but there still exists many
areas to be investigated by scholars and engineers.

2) Bounded Convergence under Bounded Disturbances:
A series of papers on the bounded set convergence at the
sampling time instants are contributed for linear and nonlinear
systems with bounded disturbances [74]–[79]. In these papers,
bounded system disturbances wk(t) and/or measurement noises
vk(t) are added to the linear and nonlinear systems, that is,
‖wk(t)‖ ≤ ε1, ‖vk(t)‖ ≤ ε2, where ε1 and ε2 are some positive
constants. In addition, the initial state error is also assumed
to be bounded, i.e., ‖xk(0)− x0‖ ≤ ε3, where x0 denotes the
desired initial state and ε3 is a positive constant. Due to
the existence of such unknown disturbances, it is difficult to
expect zero-error tracking performance no matter whether at
all sampling instants or during the sampling interval. Instead,
it is shown that the tracking errors at the sampling instants
converged to a set whose bounds are a function of εi, i= 1,2,3.
The major differences between these papers lie in the design
of updating schemes.

In an early paper [74], the conventional P-type update
law was employed using the available sampling information
for affine nonlinear systems. The convergence was conducted
based on the well-known λ -norm techniques. As is pointed
out in many papers, the convergence in λ -norm might result
in poor transient performance before coming to ultimate con-
vergence. The result in common norm sense was given in [75]
according to the D-type update law, where a direct calculation
on the inequalities of the input error norm led to a contraction
mapping. A similar problem was also addressed in [76]. Papers
[77]–[79] concentrated on the impact of involving current
iteration tracking error or feedback control for LTI systems.
In particular, [77] constructed an update law with only the
tracking errors from the current iteration and as a result a
lot of storage can be saved facilitating practical applications.
An extension to general formulations of the update law was
provided in [79], where a full utilization of the tracking errors
in the current iteration was deeply discussed. The convergence
was established using the Lyapunov method. The combination
of feedback control and ILC for sampled-data was proposed
in [78].

It is to be noted that different update algorithms are investi-
gated by Chien and his co-workers including P-type, D-type,
and feedback of current error. This research mainly focuses on
bounded convergence to some given set by letting the sampling
period be small enough under bounded disturbances.

3) Sampled-Data ILC with Arbitrary Relative Degree: An
in-depth study on sampled-data ILC for nonlinear systems
with arbitrary relative degree was carried out in [80]–[84]. The
relative degree is a description of the input-output relationship,



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 12

TABLE II
CLASSIFICATION OF REFERENCES FOR SAMPLED-DATA ILC

Model References
LTI systems without disturbances [70]–[73], [85]–[88], [91]
LTI systems with bounded disturbances [77]–[79]
Affine nonlinear systems without disturbances [80], [81], [83], [84], [90]
Affine nonlinear systems with bounded disturbances [74]–[76], [89]
General nonlinear systems without disturbances [82]

which reflects the minimum effect order between the input
and its corresponding output. For continuous-time systems,
the relative degree is defined by the Lie derivative of the
output with respect to the input; for discrete-time systems, it
is defined by the function composition. However, for sampled-
data control, the integral should be included to define the
relative degree. Consider the following SISO affine nonlinear
systems as an example,

ẋk(t) = f (xk(t))+b(xk(t))uk(t),

yk(t) = g(xk(t)),
(7)

where f (·), b(·), and g(·) are nonlinear functions. The above
system with input generated by a zero-order holder from
sampled signals has extended relative degree η for xk(t), if,
∀0≤ j ≤ N−1,∫ ( j+1)∆T

j∆T

Lbg(x(t1))dt1 = 0,∫ ( j+1)∆T

j∆T

∫ t1

j∆T

· · ·
∫ ti

j∆T

LbLi
f g(x(ti+1))dti+1 · · ·dt1 = 0,

1≤ i≤ η−2,∫ ( j+1)∆T

j∆T

∫ t1

j∆T

· · ·
∫ tη−1

j∆T

LbLη−1
f g(x(tη))dtη · · ·dt1 6= 0.

Roughly speaking, a relative degree larger than 1 indicates
that the direct input-output coupling matrix is zero. In such a
case, it is interesting to ask whether the conventional P-type
update scheme guarantees the convergence. Such a problem
was resolved in [80]–[82]. In particular, it was shown in
[80], [81] that the basic P-type scheme based on the available
sampled data can ensure a zero-error tracking for the sampling
time instants. It was then extended to a general case called
sampled-data ILC with lower-order differentiations for general
nonlinear systems in [82], where the authors used lower-order
to indicate that the derivative in the learning controller was
less than the relative degree.

Another important issue is the initial rectifying problem
[83], [84]. In other words, the initial state is shifted from its
desired value. These papers propose an effective rectifying
mechanism such that the actual output would be shifted back
to the desired one after some time interval. In [83], the fixed
initial shift was considered and the proposed initial rectifying
action was able to drive the system output to the desired
trajectory within a specified error bound. Then the initial shift
was extended to an arbitrarily varying case and a so-called
varying-order sampled-data ILC was designed and analyzed.
In all the studies, the convergence analysis was established
with the help of a technical lemma, which is an extension of
the contraction mapping principle.

4) Interval Performance of Sampled-Data ILC: It is ob-
served that in papers such as [74]–[84], only the performance
at the sampling instants is considered while the intersam-
ple behavior is seldom discussed. However, achieving good
performance at the sampling instants (at-sample) can be at
the expense of poor intersample behavior [85]. However,
guaranteeing acceptable intersample tracking performance is
a difficult problem for sampled-data ILC. Early attempts are
given in [86], [87].

In [86], the multirate ILC approach was proposed to bal-
ance the at-sample performance and the intersample behavior,
where the key idea was to generate a command signal at a
low sampling rate by using fast sampled measurements. The
details of multirate systems and multirate ILC were given to
enable an optimal sampled-data ILC in the paper. Further,
the authors developed an ILC framework for sampled-data
systems by incorporating the system identification and a low-
order optimal ILC controller in [87], as an on-going study of
[86]. The proposed system identification procedure delivers a
model that encompasses the intersample in a multirate setting
for the closed-loop system so that the resulting model could
be used for the optimal ILC synthesis. As a consequence, the
computational burden is much less than common optimization-
based algorithms for large systems.

In short, there still lacks more in-depth studies on the
intersample behavior of sampled-data ILC including novel
design and analysis technique for improving the tracking
performance between different sampling instants.

5) Scattered Contributions: Paper [88] presented a limit-
ing property of the inverse of sampled-data systems. To be
specific, for a continuous-time system with a relative degree
of one or two, the inverse of the corresponding sampled-data
system can approximate the inverse of the original continuous-
time system independently of the stability of the zeros as the
sampling period ∆T goes to zero.

Time-delay was introduced into the affine nonlinear model
in [89] with other settings similar to [74], [75]. The PD-type
update scheme was employed with a bounded convergence
analysis; however, the differential signal is not suitable for
sampled-data implementation.

The sampled-data ILC for singular systems was addressed in
[90] using a P-type learning algorithm and λ -norm techniques.
An online optimal sampled-data ILC problem was dealt with
in [91] for LTI system with bounded disturbances, where
the control objective was to minimize a smooth objective
function of inputs and outputs. A gradient descent method
was employed to generate the optimal solution iteratively.

Based on the above reviews, we have several remarks. First
of all, much attention is paid to LTI and affine nonlinear



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 13

systems with/without bounded disturbances, whereas there
has been little progress with time-varying systems, general
nonlinear systems, and stochastic systems. Moreover, most
papers contribute to the at-sample performance, while the
intersample behavior is seldom considered. However, good
at-sample tracking performance does not necessarily imply
acceptable intersample behavior. Furthermore, the traditional
contraction mapping method and its extensions are the main
technique for convergence analysis, which restricts the re-
search range of systems and problems. Last but not least, the
implementation of sampled-data ILC in practical applications
is of great significance, but few publications are found on this
direction [92]. Therefore, a systematic framework of sampled-
data ILC is yet blank and much effort should be made by con-
sidering the above aspects of sampled-data ILC. Meanwhile,
a sampled-data control methodology is usually combined with
the quantized technique to further reduce the data amount,
where the latter is reviewed in the next subsection.

B. Quantized ILC

To reduce the communication burden, another effective
method is to introduce a quantization mechanism. That is, we
first quantize the measured signal and then transmit the signal.
In fact, the quantization method has been deeply studied in
the networked control field; however, few papers have been
reported on quantized ILC.

An early attempt on the quantized ILC was given in [93],
where the output measurements were quantized by a logarith-
mic quantizer and then fed to the controller for updating ILC
law. By using the sector bound technique and conventional
contraction mapping method, it was shown that the tracking
error converged to a small range whose upper bound depended
on the quantization density. Meanwhile, the tracking error
also depended on the target value, which can be seen from
the expression of the upper bound. That is, the larger the
output measurement is, the larger the final tracking error
upper bound is. To achieve zero-error tracking performance, an
alternative framework was proposed in [94], where the desired
reference was first transmitted to the local plant to generate
a tracking error and then the tracking error was quantized
by a logarithm quantizer and transmitted. In other words, the
tracking error, rather than the output signal, was quantized.
This scheme can guarantee the zero-error convergence with the
inherent principle of the logarithmic quantizer. The extension
to stochastic systems was addressed in [95], where a detailed
comparison of the tracking index was provided by considering
both stochastic noises and quantization error. It can be seen
from the simulations that the ultimate index value is com-
pletely generated by the stochastic noises, indicating that the
quantization error is eliminated asymptotically. The extension
of the above quantization methods to input quantization case
was provided in [96] with similar conclusions of [93], [94].
Similar idea of quantizing the measured error was also used
in [97], [98] for dealing with discrete-time and continuous-
time multi-agent systems, respectively. We remark that the
logarithm quantizer should have infinitesimal precision near
zero, which is hard to implement in applications. Thus, it is

important to propose new quantization mechanisms to improve
the tracking performance.

In [99], a uniform quantizer was used with an additional
scaling mechanism implemented between the plant and con-
troller. In this case, the measured signal is first scaled by prior
scaling functions and then quantized by the uniform quantizer;
then, at the controller, the received signal is converted using
the scaling functions again to obtain a well-approximation of
the original signal. Such process is called the encoding and de-
coding mechanism. In fact, the scaling functions play a role to
enhance quantization precision. In [47], another quantization
method called Σ∆-quantizer, of which the parameters selection
ensured a quantization bound similarly to the logarithm sector
bounded property, was introduced. The quantization error
was treated as a zero-mean martingale difference sequence,
which may be a restrictive condition. In [100], a probabilistic
quantizer was first introduced into the design of quantized
ILC. This quantizer clearly produces a random quantization
error with zero-mean and bounded variance. As a result, with
the help of a decreasing learning gain, it can be proven that
the actual tracking error would converge to zero although a
rough uniform probabilistic quantizer. These results show a
promising research direction for addressing the quantized ILC
problem according to practical requirements.

In sum, quantized ILC is still in its first stages compared
with more fruitful results using conventional quantized control.
Two valuable research directions should be highlighted for this
issue. The first one is to provide an estimation on the relation-
ship between quantized data and the tracking performance.
The other one is to investigate effective soft mechanisms for
data acquiring, transforming, transmitting, and recovering to
eliminate or reduce the effect of quantized data.

V. DATA ROBUSTNESS AND PROMISING DIRECTIONS

As has been explained in the previous sections, ILC requires
little information on the system matrices. In other words, the
design of learning controller mainly depends on the input and
tracking information of the previous iterations. Thus, it is a
typical data-driven method [101]. From this viewpoint, the
ILC problem under incomplete information essentially is a
data robustness problem. That is, the inherent control objective
is to investigate how the control schemes perform according to
different levels of data loss. Generally, if the designed learning
control scheme can behave well even if most data is lost due
to various restriction conditions, we say the scheme has good
data robustness; if the designed learning control scheme is very
sensitive to the data loss, we say the scheme has poor data
robustness. However, we should note that the concept of data
robustness is still unclear [101], and therefore, the research on
ILC under incomplete information would settle a fundamental
cognition and may guide us to find a direction in establishing
the data robustness for data-driven control.

In the traditional control theory, robust control indicates
an approach to controller design for dealing with model
and/or parameter uncertainty. We define the robustness of
this framework as the property of maintaining certain control
performance when the uncertain parameters or disturbances
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vary within some set (typically compact). Therefore, the
traditional control robustness is defined with respect to the
system itself. While considering the data-driven control, the
system information is excluded. Thus, it is not suitable to
follow the above definition of control robustness. As a matter
of fact, the robustness for data-driven control should be coined
with respect to the information/data itself. Particularly, the
inherent relationship between the incomplete information/data
and the control performance would explicitly describe the
robustness issue. Along this line, we would like to share
the following points. First, the average data loss can ap-
proximate 100% in various passive incomplete information
cases (e.g., data dropouts) while retaining the asymptotical
convergence. That is, the DDR can be any number less than
1 while the convergence of ILC algorithm is guaranteed.
Thus, there may not exist a critical value of the data loss
for data robustness issue. Second, although the asymptotical
convergence can be ensured when large data loss appears,
the transient performance of the learning algorithms would
generally deteriorate (for example with the slow convergence
speed and transient growth problems). Thus, the description
of data robustness should take these indices into account.
Third, data-driven control features little model information in
designing the control algorithms and thus, the data robustness
may be defined independent of the system model. That is, the
data robustness should be same for all or at least most types of
systems. In sum, a mathematical formulation of such definition
needs more investigations.

In ILC with incomplete information, the emphasis should
be put on the robustness significance contained in the lost
information and related control system design. In other words,
we should concentrate on the in-depth understanding of the
restriction and trade-off between the information and tracking
indices of ILC (such as tracking precision, convergence speed,
control energy, and data amount). Based on this relation,
we can evaluate the key factors of improving the tracking
performance when losing partial data. In this respect, we
highlight the following possible prospective research topics.

• A good solution for data dropout problem can be ex-
tended to many other types of incomplete information
environments; thus, it deserves more deep investigations
on the essential points, for examples, the quantitative
influence of data dropouts on tracking performance, novel
compensation mechanisms of the lost data with respect
to specified objectives, and the controller design and
analysis under general data dropout environments.

• When considering communication channels, many open
problems are waiting for profound exploration and ex-
ploitation on various communication constraints such
as random communication delay and multiple delays,
random and/or unrecognized packet disordering, very
limited communication bandwidth, insufficient memory
storage, and multi-channel transmission and fusion prob-
lem. Moreover, the combined effect of multiple commu-
nication constraints is also of interest.

• Sampling is an effective and economic treatment of
continuous-time systems using computer technology,

whereas the specific involvement of sampling techniques
is not so clear for applications. It yet lacks an explicit
answer to the many practical requirements such as the
lowest sampling frequency, the specific sampling pattern
(uniform or nonuniform), the inherent relation between
the sampling pattern and the control performance. More-
over, it is also important to develop suitable sampling
framework to satisfy the trade-off between minimum data
amount and optimal tracking performance.

• Quantized ILC is in its embryonic stage as only tentative
convergence results for the common quantizer are pro-
vided, whereas the essential performance improvements
based on finite precision quantizer are not investigated.
The kernel issue is to deal with the inevitable quantization
error, find out the tracking limitation using quantized data,
search suitable treatments for eliminating or reducing
the effect of quantization, and establish the analysis and
synthesis framework for quantized ILC.

• In the existing literature, the passive incomplete infor-
mation is generally formulated by random variables and
techniques in stochastic control are applied to derive
the performance analysis, whereas the active incomplete
information is usually described as a certain loss variable
and the bounded convergence analysis for conventional
ILC is achieved. Since the ILC problem can be well
conducted as a repetitive process [102], it is expected the
repetitive process based approach can provide a mean-
ingful solution framework to the ILC with incomplete
information.

When investigating the data robustness issue of ILC, we
should pay special attention to the triple shown in Fig. 6:
(incomplete) information, index, and control. The incomplete
information not only includes both passive and active types,
but also includes a mixture of both. The indices contain
tracking precision, convergence speed, input energy, etc. The
control part includes algorithms design and analysis as well as
the experimental verification of the theoretical results. Based
on this triple, we have a triple of key points in investigation:
restrictive relationship, control system, and synthesis/analysis.
In particular, the restrictive relationship between the incom-
plete information and control indices plays a fundamental role.
With an in-depth understanding of the relationship, one can
implement the specific realization of the control system and
then establish the synthesis and analysis framework for the
specific problems.

VI. CONCLUSIONS

In this paper, we have surveyed the recent progress on
ILC with incomplete information, which is caused by prac-
tical conditions, or passive incomplete information, and man-
made treatments, or active incomplete information. For pas-
sive incomplete information, the random loss conditions such
as data dropouts, communication delay and constraints, and
iteration-varying lengths are given much attention. For active
incomplete information, we focus on the sampled-data ILC and
quantized ILC, both of which considerably reduce the amount
of data required for acquiring and processing. Based on this
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Fig. 6. The research triple of ILC with incomplete information.

survey, it is observed that ILC with incomplete information
is actually a case of the data robustness problem. For such a
problem, two issues should be given sufficient concern: the
first is to evaluate the influence of incomplete information on
control performance, and the second is to design a suitable
synthesis and analysis framework. It is expected that this
survey will give the reader a better understanding of ILC
with incomplete information and provide useful guidelines for
further research to perfect the framework.
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