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This paper contributes to a technical overview of recent progresses on stochastic iterative learning control (ILC), where stochastic ILC implies
the learning control for systems with various random signals and factors such as stochastic noises, random data dropouts, and inherent random
asynchronism. The fundamental principles of ILC are first briefed with emphasis on the system formulations and typical analysis methods. Then the
recent progresses on stochastic ILC are reviewed in three parts: additive randomness case, multiplicative randomness case, and coupled randomness
case, respectively. Three major approaches, i.e., expectation-based method, Kalman filtering-based method, and stochastic approximation-based
method, are clarified. Promising research directions are also presented for further investigation.
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1. Introduction

While starting basketball shooting from a fixed position, we
may fail for the first several shoots as we have insufficient
information about the distance and environments. However, after
each shoot, we can learn the information about the basketball
shooting process and then improve our shoot angle and power.
Thus, we can shoot more and more accurate until we hit the
basket. The inherent principle is that we can learn from the
past shoots or experiences. This learning ability helps us master
almost every skill such as swimming, driving, and painting. This
basic cognition of learning can be also applied to the industrial
systems such as robotics and batch processes. For the latter type
of systems, the operation information from previous batches can
be fully utilized to improve the performance. In particular, for
those systems that operate in a fixed time interval, which will
be called an iteration, and repeat the operations successively, the
operation information including input and output as well as the
tracking reference can be utilized to revise the input signal for
the next iteration. As a consequence, the tracking performance is
gradually improved as the iteration number increases. This type
of control is called iterative learning control (ILC), motivated
by the basic concept of learning, which has been an important
branch of intelligent control. Clearly, ILC is a typical control
strategy that mimics the learning process of human being, in
which the pivotal idea is to continuously learn the inherent
repetitive factors of system operation processes.

Comparing ILC with other traditional control methodolo-
gies such as adaptive control and robust control, we find that ILC

has two distinct features. The first feature is that ILC requires
the repetitive property of operation processes. In particular, the
system should complete each iteration in a fixed time interval;
that is, the iteration length is identical for all iterations. For
each iteration, the system should be reset to the same initial
position; that is, the initial state is identical for all iterations.
Moreover, the desired reference is invariant along the iteration
axis. In sum, ILC requires invariant iteration length, tracking
reference, and initial state, so that the update algorithm could
learn the inherent invariant factor and then improve the tracking
performance along the iteration axis. This cognition has been
revealed in [1]. It is a fundamental principle for learning-based
mechanism in control. ILC makes an in-depth utilization of
the available information to learn the inherent invariance. The
second distinct feature of ILC is that it requires little information
of the system. In other words, ILC is a typical data-driven
control strategy because the generation of the input for the next
iteration completely depends on the input and tracking infor-
mation of previous iterations. In particular, the typical structure
of ILC update laws is a predefined function of the input and
output/tracking information. Consequently, ILC is effective in
dealing with many traditional control difficulties such as high
nonlinearity, strong coupling, modeling difficulty, and tracking
of high precision. In essence, ILC is a kind of integral control
along the iteration axis for a fixed tracking trajectory.

We should point out that both features have been deeply
investigated and extended in the past decades. On the one hand,
much effort has been devoted to relax the invariance limitation
of ILC so that the application range can be broadened. For exam-
ple, various initial state conditions were discussed and compared
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in [2], where the alignment condition of initial state was pro-
posed and analyzed to remove the space resetting requirement.
Some initial state learning or rectifying mechanisms were pro-
posed in [3] and [4] to offer alternative schemes addressing the
identical initial condition. The non-repetitive system dynamics
was discussed in [5, 6] to understand the essential limitation
of learning ability. Moreover, recent publications7, 8 provided
an in-depth discussion on the random iteration-varying length
problems, which clearly remove the invariant operation length
assumption. On the other hand, although scholars have con-
tributed many works to design suitable data-driven algorithms
to facilitate various application scenarios, the involvement of
system information may provide extra advantage in handling
the transient performance of the learning control. For exam-
ple, several papers have been published on the combination
of feedback control in time domain and feedforward control
in iteration domain,9–11 which can enhance the stability and
improve tracking precision simultaneously.

The concept of ILC was first proposed by Uchiyama in
[12], which was written in Japanese and thus not widely spread.
The paper in 1984 published by Arimoto et al was widely
recognized as the initiation of ILC,13 where the concept of
learning was applied to robot control for repetitive tasks. After
that, a large amount of papers have been published on various
issues of ILC. To name a few, special issues were launched
by International Journal of Control,14, 15 Asian Journal of Con-
trol,16, 17 and Journal of Process Control.18 For survey papers
the readers can refer to [19–23], where different emphases are
highlighted. In particular, the tutorial introduction was given in
[19], a literature classification from 1998-2004 was provided in
[20], the first detailed survey on stochastic ILC was given in
[23], the composite energy function approach-based synthesis
and design was clarified in [22] and a detailed comparison of
ILC, repetitive control, run-to-tun control was given in [21].
Moreover, the readers may also refer to the monographs to
make an in-depth understanding of the theory issues and ap-
plications of ILC.24–33 From these advances it is observed that
many fundamental issues of ILC have been carefully explored
such as the initial state condition,2–4 Lipschitz condition on
nonlinear functions,25, 26 optimization of the learning gains,29

practical implementations,30, 31 repetitive requirements on the
systems settings,32, 33 and robustness issues.27 In addition, con-
traction mapping method, 2D system and repetitive process-
based approach, and composite energy function-based method
have been proposed and developed as the mainstream methods
for addressing various ILC problems.

When considering the control of practical systems, it is
observed that various stochastic factors exist in these systems.
For example, random process disturbances and measurement
noises are general unavoidable in most systems (either bounded
or unbounded), which makes the systems themselves to be
stochastic systems. Moreover, in networked control structure of
the practical application, where the plant and the controller are
separated in different sites and communicated with each other
through wired/wireless networks, the random data dropouts are
very common due to limited bandwidth or data congestion.
Furthermore, multi-agent systems have become a hot topic to
the control community, where the communication among agents

usually suffer various randomness including communication
noises, linkage breaks, and fading channel. In addition, the
updating process among subsystems of a large-scale system is
generally randomly asynchronous rather than synchronous. All
these types of randomness are generally described by random
variables in probability theory. The random variables may or
may not have some statistical properties. If the statistical prop-
erties such as mean and variance are known, we can utilize this
information to make a primary compensation for the random
signals; otherwise, we need to design the random signal indepen-
dent algorithms to facilitate wide applications. This distinction
makes the synthesis and analysis of stochastic ILC evidently
different from the traditional ILC problem, which has become
one of the important directions in the current research of ILC.

Generally, stochastic ILC indicates the part of ILC con-
centrating on systems with various stochastic signals or factors,
where the stochastic signal or factor is described by a random
variable with/without a specified probability distribution. The
main feature of stochastic ILC is the introduction of random
variables, which makes the conventional analysis techniques
for deterministic systems unapplicable. In a previous review
paper,23 the research on stochastic ILC is classified in term
of the systems formulations, i.e., linear systems with system
disturbances and/or measurement noises, nonlinear systems with
system disturbances and/or measurement noises, and systems
with other kind of stochastic signals such as data dropouts and
random asynchronism. The previous results in these categories
are reviewed according to their problems and formulations.
Unlike [23], we will review the recent progresses on stochastic
ILC according to the position of random variables in this paper.
In particular, we will make the following categories: additive
randomness case, multiplicative randomness case, and coupled
randomness case. In additive randomness case, the random
signals or factors are added to the system equations and update
laws as an individual part. In multiplicative randomness case, the
random signals or factors are multiplied to the system variables
such as state, tracking error, and input. In the coupled random-
ness case, we mean the random signals or factors are formulated
as an inherent part of the original signals, which cannot be sepa-
rated as an additive term or multiplicative coefficient. Moreover,
we contribute our major effort to reveal the essential analysis
techniques for each case, so that this paper may shed light on
the hidden critical points behind the complex derivations. As a
consequence, we expect more interesting results in the future
along with the guidelines provided in this paper.

The structure of the paper is arranged as follows. In Section
2, the fundamental principles of ILC is proposed with basic
formulations of systems and update laws. The typical methods
for deterministic systems are also reviewed in this section. In
Section 3, the main problems and critical techniques for systems
with additive random signals and factors are elaborated. The
multiplicative random signals and factors case is reviewed in
Section 4. The systems with coupled randomness that cannot
be separated as additive or multiplicative case are discussed in
Section 5, where the emphasis lies on the possible solutions.
Based on the review of these three aspects, the promising
research directions are given in Section 6, which attempt to
make a guide of futher investigation. Concluding remarks are
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presented in Section 7.

2. Fundamental Principles of ILC

In this section, we present the fundamental principles of ILC
based on the discrete-time system models. The reasons for
selecting discrete-time systems are twofold: on the one hand,
many systems adopted the computer-aided control framework,
which is essentially discrete; on the other hand, the discrete-time
model facilitates the formulation of random signals and factors.
Then, we proceed to provide a review on the typical methods for
deterministic systems, where the contraction mapping method
and 2D system/repetitive process-based approach are addressed.

2.1. Fundamental Formulation of ILC

The basic structure of ILC consists of a plant, a learning
controller, and a memory device, as shown in Fig. 1, where
the plant denotes the repetitive operation process, the learning
controller generates the input based on a specified design form,
and the memory device is used to store the signals of previous
iterations. For the kth iteration, the input uk(t) of the whole
iteration interval is fed to the plant and the corresponding output
yk(t) is produced, which may have a certain degree of deviation
from the desired tracking reference yd(t). Then, all these signals
are utilized in the learning controller to generate the input signal
uk+1(t) for the next iteration, which will be sent to the plant
and stored in the memory device simultaneously. The synthesis
objective of ILC is to propose a proper update law for the
learning controller, and the analysis objective of ILC is to inves-
tigate the conditions for asymptotical convergence of the output
yk(t) to the desired reference yd(t) as the iteration number k
increases and study other performance indices such as transient
performance, robustness, and final tracking precision. Therefore,
ILC differs from traditional control methodologies such as PID
control, robust control, and adaptive control in the major aspect
that ILC concentrates on the iteration-axis-based performance
improvement while traditional control methodologies pay most
attention to the time-axis-based performance adjustment. In
other words, ILC is a kind of 2D process.

Fig. 1. Basic structure of ILC.

To make a formal clarification, consider the following
discrete-time linear system:

xk(t +1) =Atxk(t)+Btuk(t),
yk(t) =Ctxk(t),

(1)

where k denotes the iteration index and t denotes the time
index. xk(t) ∈ Rn, uk(t) ∈ Rp, and yk(t) ∈ Rq are the state,
input, and output, respectively. At , Bt , and Ct are time-varying
system matrices with appropriate dimensions. Generally, we let
t be valued from {0,1, · · · ,N} with N denoting the length of
an operation iteration. For simplicity, in the following, we use
t ∈ [0,N] to denote t ∈ {0,1, · · · ,N}.

The discrete-time nonlinear affine system can be expressed
as follows:

xk(t +1) =h(xk(t))+B(xk(t))uk(t),
yk(t) =Ctxk(t),

(2)

where h(·) and B(·) are nonlinear functions. In general, the
output equation can be formulated as yk(t) = g(xk(t)) with f (·)
being a nonlinear function. We formulate (2) because it will be
referred to later.

The desired reference to track is denoted by yd(t), t ∈ [0,N].
The general control objective of ILC is to derive some update
law such that yk(t)→ yd(t), ∀t. Moreover, in ILC, it is required
that the system can repeat its process from the same starting
position/state, which implies that the initial state of the above
dynamic evolution should be reset precisely at each iteration.
This requirement is formulated as xk(0) = xd(0), ∀k, where
xd(0) denotes the desired initial state in accordance to yd(0),
i.e., yd(0) =C0xd(0).

For the kth iteration, we denote the tracking error as

ek(t) = yd(t)− yk(t), ∀t. (3)

Generally, the update law for generating uk+1(t) is formulated
as a function of ui(t) and ei(t) (or equivalently, yi(t) and yd(t)),
1 ≤ i ≤ k, t ∈ [0,N],

uk+1(t) = f (uk(·), · · · ,u1(·),ek(·), · · · ,e1(·)) . (4)

If f (·) is a linear function of its arguments, it is a linear update
law; otherwise, it is a nonlinear update law. Moreover, if the
above relationship depends only on the last iteration, it is called a
first-order update law; otherwise, it is called a high-order update
law.20 In the literature, most papers adopt the first-order type for
simplicity of the algorithm and it has been well revealed whether
the high-order update law can surpass the first-order one.20, 34

The general first-order update law is

uk+1(t) = f (uk(·),ek(·)) . (5)

Further, the update law is usually linear, which is simple for
both implementation and convergence analysis. In this case, if
the relative degree of the system (1) is one (that is, the matrix
Ct+1Bt is not zero), a P-type update law is as follows,

uk+1(t) = uk(t)+Ltek(t +1), (6)

where Lt is the learning gain matrix. If we replace the innovation
term Ltek(t +1) with Lt [ek(t +1)−ek(t)], the update law is a D-
type one.20
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In this paper, we present a survey on recent progresses
on stochastic ILC, thus we mainly consider the case that var-
ious randomness is imposed to the above formulations. For
example, the plant model may contain process disturbances and
measurement noises, the communication between the plant and
the controller may contain communication noises, leading to
random data dropouts, and the updating process in the controller
may involve random asynchronism due to data mismatch or
disordering. All these random signals and factors will make the
analysis and design of the corresponding algorithms much more
difficult. In order to deal with these randomness, some wildly
used techniques are revisited in this paper.

2.2. Typical Methods for Deterministic Systems

2.2.1. Preliminary

The lifting technique is an important transformation for discrete-
time ILC as it can fold the time-axis process dynamics by super-
vectors and highlight the iteration-axis evolution. In particular,
we define the supervectors uk = [uT

k (0), uT
k (1), · · · , uT

k (N−1)]T ,
yk = [yT

k (1), yT
k (2), · · · , yT

k (N)]T , then from (1) we have

yk = Huk +dk, (7)

where dk = [(C1A0)
T , (C2A1

0)
T , · · · , (CNAN−1

0 )T ]T xk(0),

H =


C1B0 0 · · · 0

C2A1B0 C2B1 · · · 0
...

...
. . .

...
CNAN−1

1 B0 CNAN−1
2 B1 · · · CNBN−1

 (8)

with A j
i , A jA j−1 · · ·Ai and A j

i = I if i > j. By replacing the
subscript k with d, we can define yd similarly to yk and then
ek = yd −yk. P-type update law (6) can be reformulated as

uk+1 = uk +Lek, (9)

where L = diag{L0, · · · ,LN−1}. The lifted dynamics (7) and
update law (9) are adopted in many papers for facilitating the
convergence analysis. As can be seen from (7), the time index t
has been removed and it is an iteration-based mapping from the
input uk to the output yk. Throughout this paper, we use plain
notations to denote vectors or scalars with respect to specific
time instant and iteration number, while use bold notations to
denote the supervectors or equivalently the stacked large-vectors
of vectors.

In general, there are two different ways to show the con-
vergence. The first one is the direct method, which shows
the convergence in terms of tracking error. The second one is
indirect method, by assuming the unique ud , which corresponds
the desired output, the convergence of control input will indicate
the convergence of the output.

2.2.2. Contraction Mapping Method

There are a few methods that are widely used to show the con-
vergence of ILC for deterministic systems. Contraction mapping

(CM) method is the most popular method in the verification
steps of ILC analysis. Various extensions and variations are
proposed in the literature according to different environments.
The inherent principle of the CM method is the well-known
fixed-point principle. Note that in ILC, the main objective is
to show the convergence of the output to the desired reference
with retaining the system dynamics iteration-invariant, thus it
is possible to apply the fixed-point principle for convergence
analysis. In particular, let us revisit the lifted update law (9) and
substitute ek = yd −yk,

uk+1 =uk +L(yd −yk)

=uk +LH(ud −uk), (10)

where the identical initialization condition xk(0) = xd(0) is
applied. Then, subtracting both sides of the last equation from
ud and denoting δuk = ud −uk, we have

δuk+1 =(I −LH)δuk. (11)

It is evident that δuk → 0 if we can design L such that the spec-
tral radius of I−LH is less than 1. That is, ρ(I−LH)< 1, where
ρ(M) denotes the spectral radius. Noting that I is the identity
matrix, the above condition can be reformulated with respect to
LH directly. Moreover, scholars can also derive a convergence
conditions in the norm sense. For example, ∥δuk∥ → 0 if L is
designed such that ∥I−LH∥< 1 where ∥ ·∥ denotes compatible
norms for vectors and matrices. Clearly, the existence of the
learning gain matrix L heavily depends the system matrix H.
A sufficient condition to guarantee the existence of L is that the
matrix H is of full-column rank.35

Remark 2.1. For simplicity of presentation, the proof highlight-
ed here is based on the indirect method. The similar idea can be
found when direct method is used in [5, 6, 36].

For the nonlinear system (2), the CM method can be effec-
tive if the nonlinear functions are globally Lipschitz continuous
(GLC), that is, there exist positive constants h1 and b1 such
that ∥h(x)−h(y)∥ ≤ h1∥x− y∥ and ∥B(x)−B(y)∥ ≤ b1∥x− y∥.
Note that the nonlinear system cannot be lifted similar to the
linear case, it is difficult to derive the iteration-based evolution
form. Therefore, the CM method can be directly applied to
linear systems or nonlinear systems with GLC using the well-
known Gronwall lemma, which leads to the wide applications
of the α-norm of the indicated variables. The α-norm of uk(t)
is defined as sup0≤t≤N α−λ t∥uk(t)∥, where α > 1 and λ > 1
are suitably selected values according to the specific systems.
For details, readers may refer to [26, 69]. We remark that the
GLC is required due mainly to the application of the Gronwall
lemma or α-norm techniques. If we prove the convergence by
mathematical induction method with respect to the time axis,
the globally Lipschitz condition of nonlinear functions can be
relaxed to locally Lipschitz condition.37–39

2.2.3. 2D Theory Approach

As early as 1990s, 2D system theory has been applied to deal
with ILC problems,40–42 which was then developed as a major
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method in the design and analysis of ILC algorithms. The
inherent principle is that ILC essentially constitutes a 2D system
because ILC evolves along both time and iteration axes. The 2D
systems indicate those with independent evolutions along two
directions simulatenously.43 Therefore, the main procedure for
the 2D system-based method is as follows: first, transform the
closed-loop system with ILC algorithms into a 2D system, and
then, apply the stability theory from the conventional 2D system
theory to the newly transformed system. Clearly, the develop-
ments in this way depends much on the original progresses of
2D system theory. An important research direction is to apply
the approach to newly emerging circumstances.

As an illustration, we apply the following D-type update
law for (1),

uk+1(t) = uk(t)+Lt [ek(t +1)− ek(t)], (12)

and define δxk(t) = xd(t)− xk(t) and δuk(t) = ud(t)− uk(t),
where xd(t) and ud(t) are the desired state and input, respec-
tively, associated with the given reference yd(t). Then, we have

δxk(t +1) = Atδxk(t)+Btδuk(t), (13)

and

δuk+1(t) =δuk(t)−Lt [Ct+1δxk(t +1)−Ctδxk(t)]
=δuk(t)−LtCt+1[Atδxk(t)+Btδuk(t)]+LtCtδxk(t)
=[I −LtCt+1Bt ]δuk(t)+Lt [Ct −Ct+1At ]δxk(t). (14)

Therefore, we have derived a 2D system as follows[
δuk+1(t)

δxk(t +1)

]
=

[
I −LtCt+1Bt Lt(Ct −Ct+1At)

Bt At

][
δuk(t)
δxk(t)

]
.

(15)

If one would like to apply the P-type update law (6) and
involve the tracking error directly, we may define ∆xk(t) =
xk+1(t)− xk(t) and ∆uk(t) = uk+1(t)−uk(t). Then,

ek+1(t +1) =ek(t +1)−Ct+1At∆xk(t)−Ct+1Bt∆uk(t)
=[I −Ct+1BtLt ]ek(t +1)−Ct+1At∆xk(t) (16)

and

∆xk(t +1) =At∆xk(t)+Bt∆uk(t)
=At∆xk(t)+BtLtek(t +1). (17)

Therefore, we have another 2D system formulation as follows:[
ek+1(t +1)
∆xk(t +1)

]
=

[
I −Ct+1BtLt −Ct+1At

BtLt At

][
ek(t +1)
∆xk(t)

]
. (18)

At the end of this section, we note that the repetitive process
has been deeply investigated in the past decades and fruitful
results have been obtained, which has shown its effectiveness
in design and analysis of corresponding ILC algorithms.44–46

Novel results are expected along this direction by connecting
repetitive processes with ILC formulations.

3. Additive Randomness Case

In this section, we review the major techniques for systems with
additive randomness. Here, by additive randomness we mean the
random signals/factors are involved into the systems as individ-
ual portions. For examples, the operation process may involve
random disturbances due to various factors; the measurement
of output signals may be influenced by random noises; and
the data transmission of networks would introduce additional
communication noises. All these signals are generally described
by random variables which are additive to the original system
formulas. It should note that the additive noises will always
exist, no matter whether the original signal occurs, since they are
in an additive form. To facilitate the performance analysis and
without loss of generality, the additive randomness is assumed
to be with zero mean and finite moments.

In order to demonstrate that the additive randomness are
quite common, this section starts from a few examples of
additive randomness.

3.1. Examples of Additive Randomness

Example 1 (Random Initial States). Consider the lifted formula-
tion (7), where we notice that the response to the initial state
is expressed by an individual term dk. In many papers, the
identical initialization condition is assumed, i.e., xk(0) = xd(0),
then the influence of the initial state is eliminated. However, in
practical applications, the precise reset of the initial state is hard
to achieve. In fact, the initial state may vary from iteration to
iteration randomly in a small bound. Thus, it is reasonable to
assume that xk(0) is a random variable around xd(0) with its
expectation being the desired initial state xd(0). In this case,
Exk(0) = xd(0) and supk E[∥xk(0)− xd(0)∥2] < ∞. Clearly, dk
is an additive random variable in the linear formulation (7).
Example 2 (Stochastic Linear Systems). Consider the linear
system (1) with random disturbances and noises,

xk(t +1) =Atxk(t)+Btuk(t)+wk(t +1),
yk(t) =Ctxk(t)+ vk(t),

(19)

where wk(t) and vk(t) can be formulated as zero-mean white
noises in most applications. This model has been studied in
many papers as it denotes a general stochastic linear system. If
we apply the lifting technique to this model, it follows that

yk = Huk +dk +εεεk, (20)
where

εεεk =

 vk(1)+C1wk(1)
...

vk(N)+CN ∑N
i=1 AN−1

i wk(i)

 .

Clearly, all the process disturbances and measurement noises
can be separated as additive noises and all these noises are
independent with the original process.
Example 3 (Nonlinear Systems with Measurement Noises). Con-
sider the nonlinear system (2) with measurement noises,

xk(t +1) =h(xk(t))+B(xk(t))uk(t),
yk(t) =Ctxk(t)+ vk(t),

(21)
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where vk(t) denotes the measurement noise. Clearly, the mea-
surement noise is additive. Moreover, this model can also be
used to describe the case that the original system is deter-
ministic but the output is involved with communication noise
during transmission. It should be pointed out that the process
disturbance is not considered in (21). Otherwise, the random
disturbance would be coupled with the nonlinear dynamics h(·)
and B(·), which therefore is no longer additive randomness but
coupled randomness.
Example 4 (Probabilistically Quantized Error). For determinis-
tic linear system (1) and update law (6), we present the quantized
ILC problem. In particular, the output used in the update law (6)
is not the original output yk(t) but the quantized measurement
ŷk(t). In this case, update law (6) is formulated as

uk+1(t) = uk(t)+Lt [yd(t +1)− ŷk(t +1)], (22)

where

ŷk(t) = Q(yk(t))

with Q(·) being a probabilistic quantizer. For a real number v,
the probabilistic quantizer Q(·) is defined as

Q(v) =
{
⌊v⌋, with probablity ⌊v⌋+1− v
⌊v⌋+1, with probablity v−⌊v⌋ (23)

For a vector, the probabilistic quantizer is defined according to
each entry. By simple calculations, we have that the probabilistic
quantizer is unbiased, E[Q(v)] = v. Moreover, the variance for
the quantization error is bounded, E[(v−Q(v))2]≤ 1/4 when v
is a number. Denote r(v) = v−Q(v) as the quantization error,
then we can rewrite the update law (22) as follows,

uk+1(t) = uk(t)+Ltek(t +1)+Ltr(yk(t +1)). (24)

Clearly, the probabilistic quantization error is an additive ran-
domness term.

It is evident that all the randomness signals and factors,
including the random initial states, process disturbances, mea-
surement noises, and quantization error, would be transformed
as an additive term in the update law. Because these types of ran-
domness cannot be predicted and eliminated, the input sequence
generated by the update law with fixed step cannot converge
to a stable limitation but may fluctuate in a small bound. As a
consequence, the corresponding output cannot precisely track
the desired reference due to the existence of random signals.
Thus, when the output is coupled with random signals such as
those in Examples 1-3, the tracking objective should be revised
as an optimization index of the tracking error, for example,
Vt = limsupn→∞

1
n ∑n

i=k ∥ek(t)∥2. Moreover, to obtain a stable
convergence of the input sequence, a decreasing step should
be introduced to suppress the effect of random signals in the
update law, which is a mature technique in stochastic control
and optimization.

Next a few subsections will discuss the common tech-
niques to deal with ILC that can handle additive random-
ness. In stochastic ILC, the most popular methods for address-
ing random signals/factors include expectation-based method,
Kalman filtering-based method, and stochastic approximation-
based method.23 These methods will be reviewed in the follow-
ing subsections subsequently.

3.2. Expectation Based Method

The expectation-based method has been applied in several pa-
pers.47, 48 The main advantage of this method is the elimination
of the randomness. In particular, the main procedures for the
application of this method are as follows: first, an expectation is
taken to both sides of the update law or other equivalent relation-
ships; then, all variables containing randomness are transformed
into deterministic ones; and then, the following procedures for
addressing the control performance can be completed by the
conventional analysis steps.

For example, the paper [47] presented the following lifted
formulation with stochastic noises,

yk = Huk +εεεk, (25)

where εεεk is the lifted noise vector. It is assumed to be white
noise with Eεεεk = 0, E[εεεkεεεT

k ] = V , E[εεεkεεεT
k+1] = 0, i ̸= 0, where

V is positive definite.
The update law is a P-type one in lifted form (9). By

defining He = I −HL, it is obvious that

ek = Heek−1 +εεεk−1 −εεεk. (26)

To prove the convergence, expectation is taken to both sides of
the last equation. This treatment implies that the mathematical
expectation of ek converges to zero if the spectral norm of
ρ(He)< 1. Besides, the variance matrix Var[ek] is also shown to
converge to some constant matrix. From this example, it is seen
that the expectation-based method is easy for eliminating the
additive randomness and transforming the original relationship
into a deterministic type.

However, the expectation-based method has some distinct
limitations. First, the expectation of the tracking error converges
to zero is not always as good as expected, because it may
result in a large tracking error if the covariance limit is large.
In other words, even if the expectation of the tracking error
converges to zero, the actual tracking error may be quite large
due to the accumulation of the random signals. Moreover, the
variables in the derived equations should be independent, so that
the expectation can be taken to each variable independently for
product terms. Last but not least, the expectation-based method
is mainly appropriate for linear systems and linear laws, but
generally not applicable to nonlinear systems nor nonlinear
laws, because nonlinearities may make the variables coupled
together and then the expectation is hard to taken to the inherent
randomness. To sum, the application range of the expectation
method is narrow due to these limitations.

3.3. Kalman Filtering Based Method

Kalman filtering has shown its valuable effect in eliminating
stochastic noises and estimating the actual state information in
the conventional control field.49 The Kalman filter has numerous
applications in practical systems and technologies such as guid-
ance, navigation, and control of vehicles. Although extensions
and generalizations of Kalman filtering have been developed
much such as extended Kalman filter and unscented Kalman
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filter for nonlinear systems, the most favorable applications of
Kalman filter is for linear systems where stochastic noises are
with good statistical properties.

The conventional Kalman filtering algorithm includes two
steps. The first step is called prediction, in which the current
state variable is estimated on the basis of the available data; The
second step is called update, in which the prior estimation is
corrected with the innovation term generated from the new mea-
surement and the optimal Kalman gain is updated. It should be
emphasized that the recursive optimal Kalman gain is calculated
by optimizing the covariance of the error between the predicted
and measured output/state. This idea can be applied to derive the
filtering algorithms for a 2D system, which further leads to the
novel ILC update laws with time- and iteration-varying learning
gains.50–53

To see this point clearly, let us consider the application of
the D-type update law (12) to the stochastic linear system (19),
where the learning gain Lt is replaced with Lt,k to denote the
iteration-dependence.50 In this case, similar to the derivations in
Subsection 2.2, we can obtain the following 2D formulation,[

δuk+1(t)
δxk(t +1)

]
=

[
I −Lt,kCt+1Bt Lt,k(Ct −Ct+1At)

Bt At

][
δuk(t)
δxk(t)

]
+

[
Lt,kCt+1 Lt,k

−I 0

][
wk(t +1)

vk(t +1)− vk(t)

]
, (27)

where we remind that δxk(t) = xd(t) − xk(t) and δuk(t) =
ud(t)−uk(t), ∀t,k. Assume that all the random variables {wk(t)}
and {vk(t)} are independent sequences of white noises of zero-
mean and positive-definite covariance matrices. The initial s-
tate error and the initial input error are also assumed to be
zero-mean white noises. The initial state error is uncorrelated
with other random signals including initial input error, process
disturbances, and measurement noises. All these assumptions
are made to facilitate the application of the Kalman filtering
technique.

Denote X+ = [(δuk+1(t))T (δxk(t + 1))T ]T .The recursive
learning gain Lt,k is calculated such that the trace of the error
covariance matrix P+ , E[X+(X+)T ] is minimized. In other
words, it is calculated from the following equation,

d (trace(P+))

dLt,k
= 0. (28)

Substituting the detailed expansion of P+ (for details, please
refer to [50]), we are able to derive

Lt,k = Pu,t,k(Ct+1Bt)
T [(Ct+1Bt)Pu,k(Ct+1Bt)

T +Sk]
−1, (29)

where Sk is a positive-definite matrix associated with the state
error covariance and the covariance matrices of random noises,
and the input error covariance matrix Pu,t,k is recursively defined
by

Pu,t,k+1 = (I −Lt,kCt+1Bt)Pu,t,k. (30)

Clearly, for any fixed time instant, the above recursions along
the iteration axis are consistent with the classical expressions of
Kalman filter. Later, it was proved that any positive-definite ma-
trix selection of Sk can guarantee the mean-square convergence

of the input error to zero.52 This relaxation has greatly removed
strong dependence on the system information in the derived
algorithms. For the P-type update law (6), similar recursive
update algorithms can be derived.52

Indeed, the Kalman filtering-based method, which was pro-
posed by Saab in the early 2000s, has successfully established
a systematic framework for treating stochastic linear systems
with good statistical properties of all involved random signals.
The mean-square convergence of the proposed algorithms can
be obtained, which is a much stronger than the expectation-
based method. Thus, it is of great significance for practical
applications. Moreover, the recursive calculation of the learning
gain is adaptive in both time domain and iteration domain. This
will benefit the iteration-varying processes.

The main procedures for Kalman filtering-based method
are as follows. First, build a 2D model with respect to the input
error and state error. Next, calculate the derivative of the trace
of the input error covariance matrix to generate the learning
gain. Then, prove the mean-square convergence of the derived
recursive algorithms and analyze the tracking performance.

Along this direction, some open problems exist. First, in
order to obtain a good convergence results, the initial input
error is assumed to be a zero-mean white noise,50, 52 which
means that the initial input uk(t) should be normally distributed
around the desired input ud(t). However, it is hard to satisfy this
condition when little system information is known in advance.
Therefore, how to relax the requirement on the initial input is
an interesting problem for practical applications. Moreover, the
noise assumptions are somewhat restrictive and it is meaningful
to consider the possible relaxations of this condition. Last,
the application of the Kalman filtering-based method has been
widely found. It is believed such method can well handle other
ILC problems for stochastic linear systems. The research on this
issue is also open and fruitful results are expected.

3.4. Stochastic Approximation Based Method

The stochastic approximation algorithm is an effective root-
seeking or extrema-seeking approach for unknown function-
s with noisy observations.54, 55 The typical algorithms are
Robbins-Monro56 (RM) algorithm and Kiefer-Wolfowitz57 (K-
W) algorithm. The basic principles of applying these algorithms
in ILC are as follows. If there exists some desired input such that
the desired reference can be realized, that is, yd = ggg(ud) with
ggg(·) denoting the general function, then the tracking problem
can be solved as long as we can design an update law satisfying
that the generated input converges to the desired input ud . In this
case, ud can be regarded as the root of the function yd −ggg(u).
For this function, we can only access the noisy observations
ek = yd − yk = yd − ggg(u)− εεεk, where εεεk denote the additive
noise. Then, the RM algorithm can be applied to solve this
problem. Moreover, due to the existence of additive noises, it
is difficult to achieve precise tracking performance, thus we
may consider some optimization objective such as E∥ek∥2. It
is evident that ud can minimize this optimization objective if
the noises are zero-mean, independent with the system signals,
and of additive form in ek. In this case, the KW algorithm or its
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variants can be applied to solve the problem. In short, the main
procedures for stochastic approximation-based method are as
follows: first, transform the ILC problem into a root-seeking or
extrema-seeking problem of some unknown functions with the
desired input being the root or extrema-argument; then, apply
the RM or KW algorithms to complete the design and analysis
steps. This approach in ILC was first proposed in [58], where a
KW algorithm with random differences was applied.

We first explain the RM algorithm-based approach, taking
the probabilistic quantization error example in Subsection 3.1
as an illustration. Consider system (1) and update law (22) with
quantized outputs. Subtracting both sides of (22) from ud(t), we
have

δuk+1(t) = δuk(t)−ak[LtCt+1Btδuk(t)+Ct+1Atδxk(t)
+ r(yk(t +1))]. (31)

Applying the lifting technique to all variables, we have

δuk+1 = δuk −akLHδuk −akLrk, (32)

where rk , [r(yk(1))T , · · · ,r(yk(N))T ]T . It is clear that E[rk] = 0
and E[∥rk∥2] ≤ qN/4 with q and N being the output dimension
and the iteration length. Taking a careful check to (32), it is
evident that 0 is the single root of the function ggg(δu) , LHδu
provided that we assume Ct+1Bt to be of full-column rank
and design Lt such that all eigenvalues of LtCt+1Bt are with
positive real parts. Then, (32) is a typical RM algorithm and the
convergence conditions for the RM algorithm can be verified.54

As a direct corollary, we can conclude that the sequence {δuk}
generated by (32) converges to zero almost surely (for details,
we refer to [59]).

It is seen that the design of Lt requires prior information of
the system when applying the RM algorithm. This requirement
can be removed if the KW algorithm is applied.54 In particular,
consider the system (19) with both process disturbances and
measurement noises. The control purpose for this system is to
minimize the asymptotically averaged tracking errors index,

limsup
n→∞

1
n

n

∑
k=1

∥ek(t)∥2 = min a.s., ∀1 ≤ t ≤ N,

where “a.s.” is short for “almost surely”. To solve this opti-
mization problem, a vector sequence {∆(t,k)} (independent of
w(t,k) and v(t,k)) is introduced. In particular, define ∆(t,k) =
[∆1(t,k), · · · ,∆p(t,k)]T as a p-dimensional and all components
∆ j(t,k) are mutually independent identically distributed (i.i.d.)
random variables, ∀k = 1,2, · · · , t ∈ [0,N−1], j = 1, · · · , p, such
that

|∆ j(t,k)|< m, | 1
∆ j(t,k)

|< n, E
1

∆ j(t,k)
= 0, (33)

where m and n are positive constants. We denote

∆(t,k) =
[

1
∆1(t,k)

, · · · , 1
∆p(t,k)

]T

. (34)

Let {ak}, {ck}, {Mk} be sequences of real numbers satisfying
the following conditions

ak > 0, ak −−−→
k→∞

0,
∞

∑
k=0

ak = ∞ (35)

ck > 0, ck −−−→
k→∞

0,
∞

∑
k=0

(
ak

ck

)1+ δ
2
< ∞ (36)

Mk > 0, Mk+1 > Mk, Mk −−−→
k→∞

∞ (37)

where δ is defined in the noise assumptions. The initial input
u(t,0), t ∈ [0,N] is arbitrarily given. The algorithm is given
according to the odd iteration number and even iteration number,
respectively. Specifically,

u(t,2k+1) = u(t,2k)+ ck∆(t,k) (38)

and

u(t,2(k+1)) =u(t,2k)−ak
∆(t,k)

ck
(∥e(t +1,2k+1)∥2

−∥e(t +1,2k)∥2) (39)
u(t,2(k+1)) =u(t,2(k+1)) ·1[∥u(t,2(k+1))∥≤Mσk(t)

] (40)

σk(t) =
k−1

∑
l=1

1[∥u(t,2(l+1))∥>Mσl (t)
], σ0(t) = 0 (41)

where 1[·] is an indicator function meaning that it equals 1 if
the condition indicated in the bracket is fulfilled, and 0 if the
condition does not hold.

Evidently, no information about system matrices are in-
volved in the above algorithms. Only the tracking error is used
to generate the input signal. As a consequence, the algorithm
should involve additional gradient-estimation mechanism for
searching the convergence direction, c.f., (39). It was strictly
proved in [54] that the input sequence generated by the update
algorithms (38)-(41) would converge to the desired input almost
surely, provided that the coupling matrix Ct+1Bt is of full-
column rank.

Generally, the stochastic approximation-based method is
advantageous in loose convergence conditions, little information
requirement on the systems (implying wide applications), and
strong convergence properties. The main limitation of such
method is the slow convergence speed caused by the additionally
introduced decreasing sequence {ak}. However, we should point
out that the decreasing sequence is necessary for addressing the
additive random noises. If we replace the decreasing sequence
with a fixed gain, the almost sure convergence is still ensured
with the sacrifice that the convergence limit may deviate from
the desired one. The deviation mainly depends on the random
noises; therefore, if the random noises are with small fluctuation
range, the final deviation for algorithms with fixed gain is
still acceptable for practical applications. This point can be
regarded as a trade-off between the tracking performance and
convergence speed.

4. Multiplicative Randomness Case

In this section, we review the major techniques for systems
with multiplicative randomness. The multiplicative randomness
is usually caused by the imperfect communication channel-
s. For examples, for fading channels in communications, the
multiplicative randomness is introduced to describe the fading
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phenomenon, and for data dropouts in the networks due to link
breaks and data congestion, they are also denoted by a random
variable multiplied to the original signals. Although we separate
the randomness by additive, multiplicative, and coupled types,
the main methods for addressing the stochastic ILC problem
are consistent. Therefore, the specific derivations for the specific
treatments in the following may be concise as we have detailed
them in the last section.

4.1. Examples of Multiplicative Randomness

Example 5 (Random Data Dropouts). Networked control struc-
ture has been widely employed in many engineering implemen-
tations because this structure has high flexibility and robustness.
In the configuration, the plant and the learning controller are
located at different sites and communicate with each other
through wired/wireless networks. While considering the com-
munication networks, due to data congestion, limited bandwidth,
and linkage faults, the data packet may be lost during transmis-
sion. Therefore, the data transmission has two alternative states:
successful transmission and loss. In this case, the data dropout
is generally described by a random binary variable, say γk(t) for
the data packet at time instant t of the kth iteration. In particular,
γk(t) is equal to 1 if the corresponding data packet is successfully
transmitted, and 0 otherwise. Then, to model the random data
dropout, we need to impose a mathematical formulation of the
random variable γk(t). The most common model for γk(t) is
the Bernoulli variable model. In particular, the variable γk(t) is
independent for different time instants t and iteration number k.
Moreover, γk(t) obeys a Bernoulli distribution with

P(γk(t) = 1) = γ , P(γk(t) = 0) = 1− γ, (42)

where γ = Eγk(t) with 0 < γ < 1.
In this example, we consider data dropout occurring at the

measurement side only; that is, the network from the plant to
the controller suffers random data dropouts while the network
from the controller back to the plant is assumed to work well.
When the data packet is lost during the transmission, we have
to propose a specific data compensation mechanism for the
dropped data. For simplicity, if the output data is lost during
transmission, we replace it with the desired reference signal. In
such formulation, the update law (6) becomes

uk+1(t) = uk(t)+ γk(t +1)Ltek(t +1). (43)

In other words, if the output is successfully transmitted, then
the tracking error is available for updating the input signal;
otherwise, the output is lost during transmission, it is replaced
with the desired signal and thus the actual used tracking error
is zero. These two scenarios are integrated in (43). Clearly, the
random variable γk(t) is multiplicative to the original signals.
The ILC for systems with random data dropouts has been a hot
topic in the past few years.60–66

Example 6 (Iteration-Varying Lengths). In the conventional ILC,
we assume that the process operation should retain the same

for each iteration so that we could learn from the previous
experiences. However, in many applications, the operation may
end before arriving the desired length due to safety or large
deviation. For example, it was reported in [67] that the functional
electrical stimulation of the peroneal nerve is applied for stroke
patients, where the patients walk steps may be cut short by sud-
denly putting the foot down. This observation motivates a novel
random iteration-varying length problem in ILC. The mathemat-
ical formulation of this problem using random variables was first
given in [7] and later developed in a series of publications.8, 68–70

Now, we brief the problem formulation as follows.8 Since the
iteration length is not identical for all iterations, without loss of
generality, there must exist a length Nmin such that all iteration
length will exceed Nmin. Then, the actual trial length Nk for the
kth iteration varies between Nmin and N randomly, i.e., Nmin ≤
Nk ≤ Na. There are N − Nmin + 1 possible iteration lengths.
Denote the probability that the trial length is of Nmin, Nmin + 1,
· · · , N be p1, p2, · · · , pm, respectively, where m = N −Nmin +1.
That is, P(ANmin) = p1, · · · , P(AN) = pm, where Al denotes
the event that the iteration length is l. Obviously, pi > 0 and
p1+ p2+ · · ·+ pm = 1. Then, we could define a random variable
γk(t) denoting the event that the operation process can continue
to the time instant t in the kth iteration or not, by letting γk(t) = 1
and 0, respectively. It is clear that P(γk(t) = 1) = ∑m

i=t+1−Nmin
pi.

Based on these preparations, we can propose the P-type update
law for ILC with randomly iteration-varying lengths,8, 69

uk+1(t) = uk(t)+ γk(t +1)Ltek(t +1). (44)

In the earlier paper [7], an iteration-average operator was intro-
duced, A{ fk(·)}, 1

k+1 ∑k
i=0 fi(·) for a sequence f0(·), · · · , fk(·).

The corresponding update law with iteration-average operator is
given as follows,

uk+1(t) = A{uk(t)}+
k+2
k+1

Lt

k

∑
i=0

γi(t +1)ei(t +1). (45)

Both (44) and (45) introduce multiplicative randomness.
Example 7 (One-Iteration Communication Delay). Communica-
tion delay was also considered in the exiting literature to explore
the limitation of networked control systems. In [71, 72], one-
iteration communication delay was studied, where the communi-
cation delay indicated the iteration-axis-based delay rather than
time-axis-based delay. In particular, for the kth iteration, the
received output comes from either the current iteration, yk(t), or
the previous iteration, yk−1(t), randomly subject to 0-1 Bernoulli
distribution. In other words,

ỹk(t) = αk(t)yk(t)+(1−αk(t))yk−1(t), (46)

where ỹk(t) denotes the actually received signal and αk(t) takes
value from {0,1}. That is, if αk(t) = 1, the current output yk(t)
is received; otherwise αk(t) = 0, the previous output yk−1(t) is
received. In this case, the randomness is of multiplicative type.

aNote that the actual trial length may exceed the desired length N. In this case, the signals after the time instant N are redundant and useless for
updating. Thus, we regard this case as the standard trial length without loss of any generality.
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4.2. Expectation Based Method

For the multiplicative randomness case, the expectation-based
method is common in the existing literature, which is usually
applied incorporated with the α-norm technique (or equivalently
the Gronwall lemma), due to its simplicity in eliminating the
randomness.7, 62, 64, 66, 68–72

In [7], the expectation-based method was applied to the
update law (45) for linear system (1). By direct calculations, one
is able to have

E[A{δuk+1(t)}] = E[A{δuk(t)}]−LE[A{γk(t +1)ek(t +1)}],

in which we can easily obtain

E[A{γk(t +1)ek(t +1)}] = p(t +1)E[A{ek(t +1)}]

by the commutative property of the operators E[·] and A{·},
where p(t) denotes the probability that the operation process
continues up to time instant t. Therefore, the randomness in the
equation has been eliminated and the proof can be completed
by the conventional contraction mapping method. Consequently,
the convergence condition in [7] is supt ∥I− p(t)LCB∥ ≤ ρ < 1.

We should remark that there are two major operators in
using the expectation-based method: the expectation operator
for eliminating the randomness and the norm operator for gen-
erating a contraction mapping. Generally, we should take the
expectation operator first and then apply the norm to the newly
derived (deterministic) equation, as is done in [7]. In this case,
one can only obtain the convergence in expectation sense; that
is, limk→∞E[ek(t)] = 0 or limk→∞E[δuk(t)] = 0. Because the
expectation operator and the norm operator are not commutative,
it is hard to obtain stronger convergence conclusions such as
limk→∞E[∥ek(t)∥] = 0 except some special cases.

As we have explained in Subsection 3.2, the convergence
in expectation sense is weak. It motivates us to consider how
to achieve a stronger convergence. In [70–72], the objective
limk→∞E[∥ek(t)∥] = 0 is achieved by imposing strong condi-
tions. For example, consider the ILC problem with one-iteration
communication delay.71, 72 With the received signal ỹk(t) as
shown in (46), the modified tracking error yd(t + 1)− ỹk(t) is
used for updating. Moreover, the transmission of the generated
input to the plant also suffers random one-iteration communi-
cation delay similar to (46). In the analysis, after substituting
the detailed expressions of the related signals (which are very
complex and thus omitted here for saving space), an inequality
can be obtained by taking norm operators to both sides of
the expanded update law similar to the conventional steps of
contraction mapping method. In this inequality, the randomness
exists and the expectation is then taken to both sides of the
inequality. As a result, the strong convergence depends on a
hard-to-check condition, which we quote from [71] as follows,

ρ = ρ1 +ρ2 +ρ3 < 1,

where

ρ1 =∥E[|I −ΓΛkDΩk|]∥1 +∥Γ∥1ᾱω̄
Kg∥AB∥1

1−K f
,

ρ2 =∥Γ∥1[ᾱ(1− ω̄)+(1− ᾱ)ω̄]Φ,

ρ3 =∥Γ∥1[(1− ᾱ)(1− ω̄)Φ, Φ =
Kg∥AB∥1

1−K f
+∥D∥1,

where Λk and Ωk denote the random matrices constituted by the
random communication delay variables αk(t) and ωk(t) of the
output and input sides, Λk = diag{αk(0), · · · ,αk(N − 1)} and
Ωk = diag{ωk(0), · · · ,ωk(N − 1)}, ᾱ and ω̄ denote the expec-
tations of the corresponding delay variables αk(t) and ωk(t),
A, B, and D are stacked matrices of the system information,
K f and Kg are positive Lipschitz constants of the involved
nonlinear functions, and Γ is the stacked matrix of the learning
gain matrices. The specific meanings of these notations refer
to [71]. It is clear that the condition of ρ1 is difficult to verify
because of the coupling of expectations and matrix norm. In
other words, although a strong convergence is obtained, the
proposed conditions are impractical for applications.

To further facilitate applications, [69] investigated the spe-
cific conditions such that the expectation and norm operators are
commutative. In particular, the P-type update law (44) is applied
for the nonlinear system (2) with B(xk(t))≡ B and Ct ≡C under
the random iteration-varying length environments. Subtracting
both sides of (44) from ud(t), substituting the expression of
ek(t + 1), taking Euclidean norm to both sides of the newly
derived equation, and then taking expectations, we arrive at

E[∥δuk+1(t)∥]≤E[∥I − γk(t +1)LCB∥∥]E[δuk(t)∥]
+h1E[∥γk(t +1)LC∥]E[∥δxk(t)∥].

To access verifiable conditions, we need to exchange the com-
putation order of expectation and norm operators. To this end,
the following technical lemma was proposed in [69].

Technical Lemma. Let η be a Bernoulli binary random
variable with P(η = 1) = η and P(η = 0) = 1 − η . M is a
positive matrix. Then the equality E∥I−ηM∥= ∥I−ηM∥ holds
if and only if one of the following conditions is satisfied: (1)
η = 0; (2) η = 1; and (3) 0 < η < 1 and 0 < M ≤ I.

With the help of this lemma, the convergence condition
in [69] is to design learning gain matrix L satisfying that
0 < LCB < I. We should emphasize that such condition of
L is somewhat conservative compared with the conventional
condition of L. However, one should noticed that such conser-
vative selection of L provides us considerable advantages: the
convergence property is stronger and the occurrent probability
of randomly varying lengths is not required.

In short, the expectation-based method has been widely s-
tudied for the multiplicative randomness case. If the expectation
is first taken, the original relationships are turned into determin-
istic ones and then the traditional techniques can be applied.
However, the convergence is weak (in expectation sense). If the
norm operator is first taken, the original relationships are turn
into inequalities, where the randomness is coupled internally. In
this case, the verifiable conditions for practical applications are
usually difficult to access.

4.3. Kalman Filtering Based Method

The results of Kalman filtering-based method are few in the
multiplicative randomness case. Earlier attempts are made by
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Ahn et al for linear time-invariant systems with random data
dropouts,60, 61 where the output data suffer random loss during
the transmission from the plant to the controller. A random
variable subject to 0-1 Bernoulli distribution is used to denote
the event of data dropout or not (see Example 5).

In [60], a time-invariant version of (1) was taken into
account; that is, At ≡ A, Bt ≡ B, and Ct ≡ C. The intermittent
update law was adopted due to the random data dropout at the
sensor side. That is, the following update law was investigated:

uk+1(t) = uk(t)+Lt,kγk(t +1)ek(t +1), (47)

where Lt,k is the learning gain matrix similar to the one defined
in Subsection 3.3 and γk(t) denotes the data dropout variable
given in Example 5. Thus, (47) is modified from (43). Similar to
the derivations in [52], the following 2D system was established:[

δuk+1(t)
δxk(t +1)

]
=

[
I − γk(t +1)Lt,kCB − γk(t +1)Lt,kCA]

B A

][
δuk(t)
δxk(t)

]
+

[
γk(t +1)Lt,kC Lt,k

−I 0

][
wk(t +1)
vk(t +1)

]
.

We still use the notation X+ = [(δuk+1(t))T (δxk(t+1))T ]T and
derive the recursive formula of Lt,k by minimizing the trace
of P+ = E[X+(X+)T ]. As a result, the following computation
recursions are derived:

Lt,k = γV1Pt,kV T
2 (Πk)

−1, (48)

where V1 = (I,0), V2 = (CB,CA), Pt,k = E[XXT ] with X =

[(δuk(t))T (δxk(t))T ]T , and Πk is a positive-definite matrix as-
sociated with the state error covariance, input error covariance,
and the covariance matrices of random noises (for detailed
expressions, please refer to [60]). Similarly, a recursive compu-
tation of the input error covariance was also derived,

Pu,t,k+1 = (I − γLt,kCB)Pu,t,k. (49)

Comparing the recursive algorithms of the multiplicative
randomness case with those of the additive randomness case
given in Subsection 3.3, we find that the major difference is
the introduction of the average successful transmission rate γ ,
which clearly demonstrate the inherent effect of random data
dropouts. Generally, the smaller the average rate γ is, the lower
effect the learning gain matrix Lt,k can exhibit, and the slower
the input error covariance Pu,t,k converges to zero. That is, the
whole framework of the recursive algorithms would reduce its
efficiency as the data dropout rate increases.

4.4. Stochastic Approximation Based Method

The stochastic approximation-based method can behave well
in addressing the multiplicative randomness. It is potential in
the next phase of research. To illustrate this point, we consider
Example 5 again and revisit the update law (43). We can easily
rewrite (43) as follows:

uk+1(t) = uk(t)+ γLtek(t +1)+ [γk(t +1)− γ]Ltek(t +1).
(50)

From this formulation, it is found the former part uk(t) +
γLtek(t + 1) coincides with the traditional RM algorithm be-
cause γ is just a positive scalar constant. The latter part [γk(t +
1)− γ]Ltek(t + 1) can be viewed as a random noise term with
zero mean, because γk(t + 1) is independent of ek(t + 1) and
E[γk(t + 1)− γ ] = 0. Therefore, the convergence conditions of
the RM algorithm54 can be verified with slight assumptions on
the system model and the learning gain matrix. In other words,
the convergence for this multiplicative randomness is a simple
corollary of the additive randomness case as we can transform
the multiplicative randomness into additive randomness. Using
the above transform, we can convert most multiplicative ran-
domness problems. Thus, we omit tedious repetitions of other
similar problems. We remark that the stochastic approximation-
based method is a useful analysis tool for the multiplicative
randomness case.

5. Coupled Randomness Case

In this section, we proceed to brief the progresses for systems
with coupled randomness. Here, the coupled randomness indi-
cates those randomness terms which cannot be clearly separated
from the original equations as individual additive and multiplica-
tive forms. For these types of randomness, there are few efficient
methods for us and thus more novel methods are desiderated.
In this section, we mainly present the stochastic approximation-
based method, which was reported in recent literature, as an a
minnow to catch a whale.

5.1. Examples of Coupled Randomness

Example 8 (Successive Update Laws). In Example 5, we have
clarified that random data dropout commonly occurs for the
networked control implementations. A binary variable subject
to Bernoulli distribution is adopted to describe the randomness.
We introduce the intermittent update scheme in Example 5
(i.e., (43)), where the algorithm updates its input if and only
if the corresponding output packet is received by the learning
controller; otherwise, the algorithm will just retain its previous
input information and wait for the next available packet. Under
this scheme, the update frequency would be very slow if the
average data transmission rate is rather low. In fact, the updating
frequency is equal to the successful transmission rate. Scholars
are motivated to propose novel schemes in which the algorithms
update the input successively no matter whether the correspond-
ing packet is received or not.73, 74 In this example, we consider
system (1) and provide the following successive update law:

uk+1(t) = uk(t)+Lte∗k(t +1), (51)

where Lt is the learning gain matrix for adjusting the control
direction, and e∗k(t + 1) denotes the latest available tracking
error:

e∗k(t) =
{

ek(t), if γk(t) = 1
e∗k−1(t), if γk(t) = 0

(52)

The inherent mechanism of successive update scheme is that the
algorithm keeps updating by using the latest available packet.
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In other words, if the output of the last iteration is received,
then the algorithm will update its input using this information.
If the output of the last iteration is lost, then the algorithm will
update its input using the latest available output packet received
previously. The algorithm (51) can be rewritten as

uk+1(t) =uk(t)+ γk(t +1)Ltek(t +1)
+ [1− γk(t +1)]Lte∗k−1(t +1). (53)

If the measurement output of the last iteration is lost during the
transmission, then the one used in (51) will be unknown because
of the possibility of successive data dropouts. Thus, update
information can come from any previous iteration. Therefore,
we introduce stochastic stopping times {τ t

k,k = 1,2, . . . ,0 ≤ t ≤
N} to denote the random iteration-delays of the update. In other
words, (51) can be reformulated as

uk+1(t) =uk(t)+Ltek−τt+1
k

(t +1), (54)

where the stopping time τ t
k ≤ k. The essential update mechanism

is as follows: for the updating at t of the (k + 1)th iteration,
no information of em(t + 1) with m > k − τ t+1

k is received but
only ek−τt+1

k
(t + 1) is available. Therefore, for the iterations

k − τ t+1
k < m ≤ k, the input um(t) is updated using the same

tracking error ek−τt+1
k

(t +1).
Paying attention to (54), we are clear that the randomness

comes from the subscript of ek−τt+1
k

(t +1) (or specifically, τ t+1
k )

and thus it is coupled with the error information. Indeed, the
coupling of stochastic stopping times and the successive update
scheme make the convergence analysis more complex than that
of the additive and multiplicative randomness cases.
Example 9 (Random Communication Asynchronism). Large-
scale systems are commonly used in many industrial applica-
tions. By large-scale systems we mean that the whole system
is composed of many subsystems which are innerly connected.
That is, the operation of each subsystem has certain influence
on other subsystems and the inner influence is generally un-
known.76 To model the inner connection, we consider a large-
scale systems consisting of n subsystems, where the state of
the ith subsystem is denoted by xi(t,k) at time instant t of the
kth iteration. Then, the state vector of the large-scale system is
denoted by x(t,k) = [xT

1 (t,k), . . . ,x
T
n (t,k)]

T . The influence of all
subsystems on the ith subsystem can be described by a general
nonlinear function fi(t,x(t,k)). Due to various random factors
such as communication delay and transmission congestion, the
actual received state information for the ith subsystem may come
from older iterations of other subsystems. In other words, at the
kth iteration, the actual inner dynamics for the ith subsystem is
driven by the following state vector,

xi(t,k) = [xT
1 (t,k− τ1i(k)), . . . ,xT

n (t,k− τni(k))]T . (55)

where τ ji(k) > 0 denotes the random communication delay for
the ith subsystem at iteration k to receive information from the
jth subsystem, while each subsystem receives information from
itself without any delay, i.e., τii = 0. In other words, at the kth
iteration the latest information from the jth subsystem obtained
by the ith subsystem is xT

j (t,k−τ ji(k)), and no information from
x j(t,m) with m > k − τ ji(k) can reach the ith subsystem. In

this case, the randomness (i.e., communication asynchronism)
is involved in the formulation of the state vector, and thus, it is
difficult to separate the randomness as individual variables from
the system signals.
Example 10 (Hammerstein-Wiener Stochastic Systems) In [75],
the following Hammaerstein-Wiener system was considered,
where both system disturbances and measurement noises were
included:

vk(t) = ft(uk(t)),
xk(t +1) =Atxk(t)+Btvk(t)+ εk(t +1),

zk(t) =Ctxk(t)+ζk(t),
yk(t) =gt(zk(t))+ξk(t),

(56)

where ft(·) : Rp → Rp and gt(·) : Rq → Rq are the nonlinearities
at the input (Hammerstein part) and output (Wiener part) sides,
respectively. εk(t), ζk(t), and ξk(t) are random noises. Clearly,
due to the existence of the nonlinearities, the internal noises εk(t)
and ζk(t) are coupled with the nonlinear functions. That is, these
random noises cannot be separated from the system variables.
It has been proved in [75] that the optimal input for a given
reference according to the index Vt = limsupn→∞

1
n ∑n

i=k ∥yd(t)−
yk(t)∥2 is not identical to the one computed from the same
system without any noise. This result demonstrated the effect
of the random noises in stochastic nonlinear systems. For this
kind of systems, the approaches in the previous sections are no
longer applicable.

5.2. Stochastic Approximation Based Method

There are few effective methods for addressing the coupled
randomness. The expectation-based method fails to solve this
problem because the mathematical expectation cannot be taken
to the randomness directly, by noting that the involvement of the
randomness in the system signals is complex and unknown. The
Kalman filtering-based method has not been proved effective
for this problem because the distribution assumptions on ran-
domness are generally invalid. Unlike these methods, stochastic
approximation only requires little information of the system
structure and relaxed conditions on randomness, thus it would
be a promising approach in the future.

To demonstrate the application of this method, we review
the techniques in addressing the successive update scheme.73, 74

Reconsidering the update law (54) and noting there are random
noises in system (1), we add the decreasing step-size to (54):

uk+1(t) =uk(t)+akLtek−τt+1
k

(t +1), (57)

where ak > 0, ∑∞
k=1 ak = ∞, and ∑∞

k=1 a2
k < ∞. We observe that

the main difficulty lies in the inner randomness τ t+1
k , which

cannot not be transformed into individual form. To solve this
difficulty, we make a qualitative estimation on the influence of
this random variable first.

Note the assumption that the data dropout is subject to a
generic Bernoulli distribution and thus the successive iteration
number of data dropouts (i.e., τ t+1

k ) obeys the geometric distri-
bution. To make the notations concise, let τ denote a random
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variable satisfying the same geometric distribution, i.e., τ ∼
G(γ). Then, by simple calculations, we have E[τ] = 1/γ and
Var(τ) = (1− γ)/γ2. It follows that E[τ2] = (E[τ])2 +Var(τ) =
(2− γ)/γ2. Using direct calculations, we have

∞

∑
n=1

P(τ ≥ n1/2) =
∞

∑
n=1

P(τ2 ≥ n)

=
∞

∑
j=1

jP( j ≤ τ2 < j+1)≤ Eτ2 < ∞.

Incorporating with Borel-Cantelli lemma, we derive that P(τ >

n1/2, i.o.) = 0 and consequently, τ t
k/k → 0 almost surely as

k increases to infinity. Essentially, the result indicates that the
influence of the successive data dropouts along the iteration axis
is asymptotically negligible as the iteration number increases.

On the basis of the above estimation and conclusion, the
convergence analysis can be done by two steps. First, show the
convergence of the following update law:

uk+1(t) = uk(t)+akLtek(t +1) (58)

using the basic stochastic approximation techniques. Second,
complete the proof by verifying that the difference between
(57) and (58), i.e., ek(t + 1)− ek−τt+1

k
(t + 1), satisfies the noise

conditions in the conventional RM algorithms. The details for
this verification can be found in [73, 74].

6. Possible Future Directions

Stochastic ILC has gained more and more attention from both
scholars and engineers, where suitable treatment of the unknown
random variables is emphatically concerned. The convergence
analysis of update laws with random signals is much different
from the traditional ILC analysis approach. In particular, the
analysis of stochastic ILC would involve much knowledge of
probability theory and stochastic process. Moreover, the conver-
gence should be expressed in certain probability senses such as
expectation, mean-square, and almost sure senses. Further, the
control objective for systems with various types of randomness
may also be different from the conventional ILC problems. In
sum, the investigation of stochastic ILC has its own distinction
and requires novel techniques.

Currently, we are at the starting stage of stochastic ILC as
we mainly obtain the primary results on the classical models.
Even for the classical models, the integrated framework of
synthesis and analysis of update laws are blank for most issues.
Therefore, there are many open issues and topics in stochastic
ILC. In consideration of recent progresses, we would like to
emphasize the following research directions, which have shown
their promising significance for further developments.

• The stochastic counterparts of various classical ILC
topics are expected for contributions. For example,
point-to-point control has become an important direc-
tion of ILC owing to its additional freedom of the
tracking reference.77, 78 In point-to-point control, only
some desired points may be required to realize ac-
curate tracking, while the others are not considered.

This topic has been heavily studied for deterministic
systems; however, few papers are found for systems
with randomness such as stochastic noises.79, 80 Thus,
it is of importance to consider the stochastic point-to-
point control problem. Similarly, we have contributed
significant works on ILC with iteration-varying track-
ing references, ILC for multi-agent systems, decentral-
ized/distributed ILC algorithms, and data-driven ILC
algorithm design and analysis; however, the corre-
sponding discussions with additional random signals
and factors are seldom reported.

• The major analysis approaches for systems with
randomness are still insufficient. As can be seen
from the above overview, the expectation-based
method, Kalman filtering-based method, and stochas-
tic approximation-based method have been deeply ex-
plored. However, the expectation-based method aims to
transform the relationships into deterministic type so
that the conventional techniques can be applied. In this
case, the random characteristic is neglected and thus
cannot well describe the specific operation process.
The Kalman filtering-based method mainly requires the
system to be linear and with Gaussian random signals.
The stochastic approximation-based method generally
exhibit a slow convergence speed due to the intro-
duction of decreasing step-size sequence. Therefore,
we believe novel synthesis and analysis approaches
are of great value for promoting the developments of
stochastic ILC.

• The comprehensive framework for solving any special
problem is welcome. We have listed some typical ex-
amples of systems with additive, multiplicative, and
coupled randomness. However, most of the mentioned
examples have not been well resolved. In comparison
with other examples, the random data dropout problem
has gained much attention in recent years.60–64 Various
techniques have been provided from different perspec-
tives. A systematic design and analysis framework for
three data dropout models was reported in [65] based
on the stochastic approximation techniques. For the
other examples, systematic frameworks are still open.

• It is seen that both additive and multiplicative ran-
domness cases have been deeply investigated and all
three methods have been shown effective in addressing
different problems. However, for the coupled random-
ness case, the progresses are very limited. The additive
randomness generally indicates the additional noises
and disturbances. The multiplicative randomness gen-
erally indicates the network failure and system process
failure. Both of them can be separated from the system
signals themselves. For the coupled randomness, the
random variable is included as part of the system
signals and thus the conventional techniques fail to
eliminate or transform the random factors or signals.
Consequently, more novel and effective approaches are
fairly expected for this case.

• In the literature, most results in stochastic ILC concen-
trate on the theoretical research and few works on the



June 13, 2018 19:0 SurveySILCv2

14 Dong Shen

practical implementations are found. Indeed, various
types of randomness exist in the practical systems,
while most practical experiments adopt the convention-
al techniques for deterministic systems. Therefore, it is
of great interest to examine the performance of stochas-
tic ILC algorithms in applications and compare it with
the deterministic learning algorithms. In consideration
of practical implementations, more randomness may be
involved such as sampling and quantization. We believe
stochastic ILC can exhibit distinct performance and
property when unpredictable signals are involved in the
system operation.

Here, we only list part of points for stochastic ILC based
on our vision, which may neglect some important direction
unintentionally. We should remark that stochastic ILC is a broad
topic in ILC as it includes various randomness models, various
specific problems, and various treatment techniques. We expect
that more attention can be paid to stochastic ILC from both
scholars and engineers.

7. Conclusion

In this paper, we present a technical overview of the recent
progresses on stochastic ILC. Unlike the existing surveys, we
focus on the principles and applications of effective approach-
es for addressing the stochastic ILC problem. In particular,
we first demonstrate the basic problem formulation of ILC to
clarify the fundamental principles and then specify two major
methods for deterministic systems: contraction mapping method
and 2D system-based method. Next, we proceed to classify
the possible stochastic ILC into three categories according to
the position of random variables: additive randomness, multi-
plicative randomness, and coupled randomness. For the addi-
tive randomness, the kernel idea is to eliminate the random
variables since they are added to the system signals, where
the expectation-based method, Kalman filtering-based method,
and stochastic approximation-based method have shown their
distinct advantages in different angles. For the multiplicative
randomness, the kernel idea is to transform the original for-
m into a randomness-free formulation or additive randomness
formulation. All three methods are analyzed in sequence with
emphasis on the comparisons with additive randomness case.
For the coupled randomness, limited results have been reported
and we mainly highlight the stochastic approximation-based
method. Last, we have presented promising directions for the
future research. It should be mentioned that this paper tries to
present a technical tutorial for the reader to quickly understand
the common problems of stochastic ILC and widely-applied
techniques for the problems, thus we have not tried to seek
as many related papers as possible and we may missed some
important papers. We expect more publications on this attractive
subject will be realized in the future.

Acknowledgments

This paper is dedicated to the late Professor Jian-Xin Xu, an

IEEE Fellow, a leading expert in various fields of systems and
control, and an excellent model with his passion and dedication
to science and engineering for us. The author has discussed
deeply with Prof. Xu on various topics of systems and control
and greatly inspired by his insightful directions during the
academic visiting from February 2016 to February 2017. His
professionalism will be forever remembered.

This work is supported by National Natural Science Foun-
dation of China (61673045).

References

[1] J.-X. Xu and J. Xu, On iterative learning from differ-
ent tracking tasks in the presence of time-varying un-
certainties, IEEE Transactions on Systems, Man, and
Cybernetics-Part B 34(1) (2004) 589-597.

[2] J.-X. Xu and R. Yan, On initial conditions in iterative
learning control, IEEE Transactions on Automatic Control
50(9) (2005) 1349-1354.

[3] M. Sun and D. Wang, Iterative learningcontrol with initial
rectifying action, Automatica 38(7) (2002) 1277-1282.

[4] M. Sun and D. Wang, Initial shift issues on discrete-time
iterative learning control with system relative degree, IEEE
Transactions on Automatic Control 48(1) (2003) 144-148.

[5] D. Meng and K. L. Moore, Robust iterative learning
control for nonrepetitive uncertain systems, IEEE Trans.
Automatic Control 62(2) (2017) 907-913.

[6] D. Meng and K. L. Moore, Convergence of iterative
learning control for SISO nonrepetitive systems subject
to iteration-dependent uncertainties, Automatica 79 (2017)
167-177.

[7] X. Li, J.-X. Xu, and D. Huang, An iterative learning
control approach for linear systems with randomly varying
trial lengths, IEEE Transactions on Automatic Control
59(7) (2014) 1954-1960.

[8] D. Shen, W. Zhang, Y. Wang, and C.-J. Chien, On almost
sure and mean square convergence of P-type ILC un-
der randomly varying iteration lengths, Automatica 63(1)
(2016) 359-365.

[9] Z.-B. Wei, Q. Quan, and K.-Y. Cai, Output feedback ILC
for a class of nonminimum phase nonlinear systems with
input saturation: An additive-state-decomposition-based
method, IEEE Transactions on Automatic Control 62(1)
(2017) 502-508.

[10] Z. Hou, J. Yan, J.-X. Xu, and Z. Li, Modified iterative-
learning-control-based ramp metering strategies for free-
way traffic control with iteration-dependent factors, IEEE
Transactions on intelligent transportation systems 13(2)
(2012) 606-618.

[11] Z. Li, Y. Hu, and D. Li, Robust design of feedback feed-
forward iterative learning control based on 2D system
theory for linear uncertain systems, International Journal
of Systems Science 47(11) (2016) 2620-2631.

[12] M. Uchiyama, Formulation of high-speed motion pattern
of a mechanical arm by trial, Transactions of the Society of
Instrument and Control Engineers 14(6) (1978) 706-712.

[13] S. Arimoto, S. Kawamura, and F. Miyazaki, Bettering op-



June 13, 2018 19:0 SurveySILCv2

Overview on Stochastic Iterative Learning Control 15

eration of robots by learning, J. Robotic Syst. 1(2) (1984)
123-140.

[14] K. L. Moore and J.-X. Xu (Guest Editors), Special issue on
iterative learning control, International Journal of Control
73(10) (2000) 819-999.

[15] C.T. Freeman and Y. Tan (Guest Editors), Special issue
on iterative learning control and repetitive control, Int. J.
Control 84(7) (2011) 1193-1294.

[16] Special issue on iterative learning control, Asian Journal
of Control 4(1) (2002) 1-118.

[17] H.-S. Ahn and K.L. Moore (Guest Editors), Special issue
on iterative learning control, Asian J. Control 13(1) (2011)
1-212.

[18] Y. Wang (Guest Editor), Special issue on latest updates of
iterative learning control and their applications, Journal of
Process Control 24(12) (2014) 62-124.

[19] D.A. Bristow, M. Tharayil, and A.G. Alleyne, A survey
of iterative learning control: A learning-based method for
high-performance tracking control, IEEE Control Syst.
Mag. 26(3) (2006) 96-114.

[20] H.-S. Ahn, Y.Q. Chen, and K.L. Moore, Iterative learning
control: Survey and categorization from 1998 to 2004,
IEEE Trans. System Man and Cybernetics Part C 37(6)
(2007) 1099-1121.

[21] Y. Wang, F. Gao, and F.J Doyle III., Survey on iterative
learning control, repetitive control and run-to-run control,
J. Process Control 19(10) (2009) 1589-1600.

[22] J.-X. Xu, A survey on iterative learning control for nonlin-
ear systems, International Journal of Control 84(7) (2011)
1275-1294.

[23] D. Shen and Y. Wang, Survey on stochastic iterative learn-
ing control, J. Process Control 24(12) (2014) 64-77.

[24] K.L. Moore, Iterative Learning Control Control for
Deterministic Systems (Advances in Industrial Control,
Springer-Verlag, 1993).

[25] Y.Q. Chen and C. Wen, Iterative Learning Control: Con-
vergence, Robustness and Applications (LNCIS, Springer-
Verlag, London, 1999).

[26] J.-X. Xu and Y. Tan, Linear and Nonlinear Iterative Learn-
ing Control (LNCIS, Springer, New York, 2003).

[27] H.-S. Ahn, K.L. Moore and Y.Q. Chen, Iterative Learning
Control: Robustness and Monotonic Convergence for In-
terval Systems (Communications and Control Engineering
Series, Springer Verlag, 2007).

[28] C.T. Freeman, E. Rogers, J.H. Burridge, A.-M. Hughes,
and K.L. Meadmore, Iterative Learning Control for Elec-
trical Stimulation and Stroke Rehabilitation (Springer-
Verlag London, 2015)

[29] D.H. Owens, Iterative Learning Control: An Optimiza-
tion Paradigm (Advances in Industrial Control, Springer-
Verlag London, 2016)

[30] J.-X. Xu, S.K. Panda, T.H. Lee, Real-time Iterative Learn-
ing Control: Design and Applications (Advances in Indus-
trial Control, Springer-Verlag London, 2009)

[31] D. Wang, Y. Ye, and B. Zhang, Practical Iterative Learn-
ing Control with Frequency Domain Design and Sampled
Data Implementation (Advances in Industrial Control,
Springer Singapore, 2014)

[32] S. Yang, J.-X. Xu, X. Li, and D. Shen, Iterative Learn-
ing Control for Multi-Agent Systems Coordination (Wiley,
2017).

[33] D. Shen, Iterative Learning Control with Passive Incom-
plete Information: Algorithm Design and Convergence
Analysis (Springer Singapore, 2018).

[34] S.S. Saab. Optimality of first-order ILC among higher
order ILC. IEEE Transactions on Automatic Control 51(8)
(2006) 1332-1336.

[35] S.N. Huang, K.K. Tan, T.H. Lee. Necessary and sufficient
condition for convergence of iterative learning algorithm.
Automatica 38(7) (2002) 1257-1260.

[36] K.K. Tan, S.N. Huang, T.H. Lee, S.Y. Lim. A discrete-time
iterative learning algorithm for linear time-varying system-
s. Engineering Applications of Artificial Intelligence 16
(2003) 185-190.

[37] D. Shen and Y. Wang. Iterative learning control for net-
worked stochastic systems with random packet losses.
International Journal of Control 88(5) (2015) 959-968.

[38] D. Shen and Y. Wang. ILC for networked nonlinear
systems with unknown control direction through random
lossy channel. System & Control Letters 77 (2015) 30-39.

[39] D. Shen, C. Zhang, and Y. Xu. Intermittent and suc-
cessive ILC for stochastic nonlinear systems with ran-
dom data dropouts. Asian Journal of Control (2018) doi:
10.1002/asjc.1480.

[40] Z. Geng and M. Jamshidi. Learning control system anal-
ysis and design based on 2D system theory. Journal of
Intelligent and Robotic Systems 3(1) (1990) 17-26.

[41] J.E. Kurek and M.B. Zaremba. Iterative Learning Control
Synthesis Based on 2-D System Theory. IEEE Transac-
tions on Automatic Control 38(1) (1993) 121-125.

[42] S.S. Saab. A discrete-time learning control algorithm for a
class of linear time-invariant systems. IEEE Transactions
on Automatic Control 40(6) (1995) 1138-1141.

[43] T. Kaczerek. Two-Dimensional Linear Systems. (Springer-
Verlag Germany, 1985).

[44] E. Rogers, K. Galkowski, and D.H. Owens. Control Sys-
tems Theory and Applications for Linear Repetitive Pro-
cesses (Springer-Verlag Berlin Heidelberg, 2007).

[45] B. Altin and K. Barton. Exponential stability of nonlinear
differential repetitive processes with applications to itera-
tive learning control. Automatica 81 (2017) 369-376.

[46] J. Bolder and T. Oomen. Inferential iterative learning con-
trol: A 2D-system approach. Automatica 71 (2016) 247-
253.

[47] D. Meng, Y. Jia, J. Du, and F. Yu. Robust learning con-
troller design for MIMO stochastic discrete-time systems:
An H∞-based approach. Int. J. Adapt. Control Signal Pro-
cess 25(7) (2011) 653C670.

[48] M. Butcher, A. Karimi, and R. Longchamp. A statistical
analysis of certain iter-ative learning control algorithms.
Int. J. Control 81(1) (2008) 156C166.

[49] R.E. Kalman. A new approach to linear filtering and
prediction problems. Journal of Basic Engineering 82(1)
(1960) 35-45.

[50] S.S. Saab. A discrete-time stochastic learning control algo-
rithm. IEEE Trans. Automatic Control 46(6) (2001) 877-



June 13, 2018 19:0 SurveySILCv2

16 Dong Shen

887.
[51] S.S. Saab. On a discrete-time stochastic learning control

algorithm. IEEE Trans. Automatic Control 46(8) (2001)
1333-1336.

[52] S.S. Saab. Stochastic P-type/D-type iterative learning con-
trol algorithms. International Journal of Control 76(2)
(2003) 139-148.

[53] S.S. Saab. A stochastic iterative learning control algorithm
with application to an induction motor. International Jour-
nal of Control 77(2) (2004) 144-163.

[54] H.F. Chen. Stochastic Approximation and Its Applications
(Dordrecht, the Netherlands: Kluwer, 2002).

[55] J.C. Spall. Introduction to Stochastic Search and Optimiza-
tion: Estimation, Simulation, and Control (Wiley, 2003).

[56] H. Robbins and S. Monro. A stochastic approximation
method. Annals of Mathematical Statistics 22(3) (1951)
400-407

[57] J. Kiefer and J. Wolfowitz. Stochastic estimation of the
maximum of a regression function. The Annals of Math-
ematical Statistics 23(3) (1952) 462-466

[58] H.F. Chen. Almost sure convergence of iterative learning
control for stochastic systems. Science in China (Series F)
46(1) (2003) 67-79.

[59] D. Shen and J.-X. Xu. Zero-error tracking of iterative
learning control using probabilistically quantized mea-
surements. In Proc. the 2017 Asian Control Conference
(Gold Coast, Australia, 2017) pp. 1029-1034.

[60] H.-S. Ahn, Y.Q. Chen, and K.L. Moore. Intermittent itera-
tive learning control. In Proc. the 2006 IEEE Int. Sympo-
sium on Intelligent Control, 2006, pp. 832-837.

[61] H.-S. Ahn, K.L. Moore, and Y.Q. Chen. Discrete-time
intermittent iterative learning controller with independent
data dropouts. In Proc. the 2008 IFAC World Congress,
2008, pp. 12442-12447.

[62] X. Bu, F. Yu, Z. Hou, and F. Wang. Iterative learning con-
trol for a class of nonlinear systems with random packet
losses. Nonlinear Analysis: Real World Applications 14(1)
(2013) 567-580.

[63] X. Bu, Z. Hou, S. Jin, and R. Chi. An iterative learning
control design approach for networked control systems
with data dropouts. International Journal of Robust and
Nonlinear Control 26 (2016) 91-109.

[64] J. Liu and X. Ruan. Networked iterative learning con-
trol design for nonlinear systems with stochastic output
packet dropouts. Asian Journal of Control (2017) doi:
10.1002/asjc.1457.

[65] D. Shen and J.-X. Xu. A framework of iterative learning
control under random data dropouts: Mean square and al-
most sure convergence. International Journal of Adaptive
Control and Signal Processing, 31(12) (2017) 1825-1852.

[66] D. Shen. Iterative learning control with incomplete infor-
mation: A survey. IEEE/CAA Journal of Automatica Sinica
doi: 10.1109/JAS.2018.7511123.

[67] T. Seel, C. Werner, J. Raisch, and T. Schauer. Iterative
learning control of a drop foot neuroprosthesis - Generat-
ing physiological foot motion in paretic gait by automatic
feedback control. Control Engineering Practice 48 (2016)
87-97.

[68] X. Li, J.-X. Xu, and D. Huang. Iterative learning control
for nonlinear dynamic systems with randomly varying trial
lengths. International Journal of Adaptive Control and
Signal Processing 29(11) (2015) 1341-1353.

[69] D. Shen, W. Zhang, and J.-X. Xu. Iterative learning control
for discrete nonlinear systems with randomly iteration
varying lengths. Systems & Control Letters 96 (2016) 81-
87.

[70] L. Wang, X. Li, and D. Shen. Sampled-data iterative learn-
ing control for continuous-time nonlinear systems with
iteration-varying lengths. International Journal of Robust
and Nonlinear Control 28(8) (2018) 3073-3091.

[71] J. Liu and X. Ruan. Networked iterative learning control
approach for nonlinear systems with random communi-
cation delay. International Journal of Systems Science
47(16) (2016) 3960-3969.

[72] J. Liu and X. Ruan. Networked iterative learning control
design for discrete-time systems with stochastic commu-
nication delay in input and output channels. International
Journal of Systems Science 48(9) (2017) 1844-1855.

[73] D. Shen, C. Zhang, and Y. Xu. Two compensation schemes
of iterative learning control for networked control systems
with random data dropouts. Information Sciences 381
(2017) 352-370.

[74] D. Shen, C. Zhang, and Y. Xu. Intermittent and suc-
cessive ILC for stochastic nonlinear systems with ran-
dom data dropouts. Asian Journal of Control (2017) doi:
10.1002/asjc.1480.

[75] D. Shen and H.-F. Chen. A Kiefer-Wolfowitz algorithm
based iterative learning control for Hammerstein-Wiener
systems. Asian Journal of Control 14(4) (2012) 1070-
1083.

[76] D. Shen and H.-F. Chen. Iterative learning control for large
scale nonlinear systems with observation noise. Automati-
ca 48(3) (2012) 577-582.

[77] C.T. Freeman, Z. Cai, E. Rogers, and P.L. Lewin. Iterative
learning control for mul-tiple point-to-point tracking ap-
plication. IEEE Trans. Control Syst. Technol. 19(3) (2011)
590C600.

[78] C.T. Freeman and Y. Tan. Iterative learning control with
mixed constraintsfor point-to-point tracking. IEEE Trans.
Control Syst. Technol. 21(3) (2013) 604C616.

[79] Y. Xu, D. Shen, X.-D. Zhang. Stochastic point-to-point
iterative learning control based on stochastic approxima-
tion.Asian Journal of Control 19(5) (2017) 1748-1755.

[80] D. Shen, J. Han, and Y. Wang. Stochastic point-to-point
iterative learning tracking without prior information on
system matrices. IEEE Transactions on Automation Sci-
ence and Engineering 14(1) (2017) 376-382.



June 13, 2018 19:0 SurveySILCv2

Overview on Stochastic Iterative Learning Control 17

Dong Shen received the B. S. degree in
mathematics from School of Mathematics, Shandong Univer-
sity, Jinan, China, in 2005. He received the Ph. D. degree in
mathematics from the Key Laboratory of Systems and Control,
Institute of Systems Science, Academy of Mathematics and
System Science, Chinese Academy of Sciences (CAS), Beijing,
China, in 2010.

From 2010 to 2012, he was a Post-Doctoral Fellow with
the State Key Laboratory of Management and Control for Com-
plex Systems, Institute of Automation, CAS. From 2016.02 to

2017.02, he was a visiting scholar at National University of
Singapore (NUS), Singapore. Since 2012, he has been with
the College of Information Science and Technology, Beijing
University of Chemical Technology (BUCT), Beijing, China,
where he now is a Professor.

His current research interests include iterative learning con-
trol, stochastic control and optimization. He has published more
than 70 refereed journal and conference papers. He is author
of Stochastic Iterative Learning Control (Science Press, 2016,
in Chinese) and Iterative Learning Control with Passive Incom-
plete Information: Algorithm Design and Convergence Analysis
(Springer, 2018), co-author of Iterative Learning Control for
Multi-Agent Systems Coordination (Wiley, 2017), and co-editor
of Service Science, Management and Engineering: Theory and
Applications (Academic Press and Zhejiang University Press,
2012). Dr. Shen received IEEE CSS Beijing Chapter Young
Author Prize in 2014 and Wentsun Wu Artificial Intelligence
Science and Technology Progress Award in 2012.


