
I
terative learning control (ILC) is based on the notion
that the performance of a system that executes the
same task multiple times can be improved by learning
from previous executions (trials, iterations, passes).
For instance, a basketball player shooting a free throw

from a fixed position can improve his or her ability to
score by practicing the shot repeatedly. During each shot,
the basketball player observes
the trajectory of the ball and
consciously plans an alteration
in the shooting motion for the
next attempt. As the player
continues to practice, the cor-
rect motion is learned and becomes ingrained into the
muscle memory so that the shooting accuracy is iteratively
improved. The converged muscle motion profile is an
open-loop control generated through repetition and learn-
ing. This type of learned open-loop control strategy is the
essence of ILC.

We consider learning controllers for systems that per-
form the same operation repeatedly and under the same
operating conditions. For such systems, a nonlearning con-

troller yields the same tracking error on each pass. Although
error signals from previous iterations are information rich,
they are unused by a nonlearning controller. The objective
of ILC is to improve performance by incorporating error
information into the control for subsequent iterations. In
doing so, high performance can be achieved with low tran-
sient tracking error despite large model uncertainty and

repeating disturbances.
ILC differs from other

learning-type control strate-
gies, such as adaptive control,
neural networks, and repeti-
tive control (RC). Adaptive

control strategies modify the controller, which is a system,
whereas ILC modifies the control input, which is a signal
[1]. Additionally, adaptive controllers typically do not take
advantage of the information contained in repetitive com-
mand signals. Similarly, neural network learning involves
the modification of controller parameters rather than a
control signal; in this case, large networks of nonlinear
neurons are modified. These large networks require exten-
sive training data, and fast convergence may be difficult to

DOUGLAS A. BRISTOW, MARINA THARAYIL,
and ANDREW G. ALLEYNE

A LEARNING-BASED METHOD
FOR HIGH-PERFORMANCE

TRACKING CONTROL

© DIGITALVISION & ARTVILLE

96 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2006 1066-033X/06/$20.00©2006IEEE

guarantee [2], whereas ILC usually converges adequately
in just a few iterations.

ILC is perhaps most similar to RC [3] except that RC is
intended for continuous operation, whereas ILC is intend-
ed for discontinuous operation. For example, an ILC appli-
cation might be to control a robot that performs a task,
returns to its home position, and comes to a rest before
repeating the task. On the other hand, an RC application
might be to control a hard disk drive’s read/write head, in
which each iteration is a full rotation of the disk, and the
next iteration immediately follows the current iteration.
The difference between RC and ILC is the setting of the ini-
tial conditions for each trial [4]. In ILC, the initial condi-
tions are set to the same value on each trial. In RC, the
initial conditions are set to the final conditions of the previ-
ous trial. The difference in initial-condition resetting leads
to different analysis techniques and results [4].

Traditionally, the focus of ILC has been on improving
the performance of systems that execute a single, repeated
operation. This focus includes many practical industrial
systems in manufacturing, robotics, and chemical process-
ing, where mass production on an assembly line entails
repetition. ILC has been successfully applied to industrial
robots [5]–[9], computer numerical control (CNC) machine
tools [10], wafer stage motion systems [11], injection-mold-
ing machines [12], [13], aluminum extruders [14], cold
rolling mills [15], induction motors [16], chain conveyor
systems [17], camless engine valves [18], autonomous vehi-
cles [19], antilock braking [20], rapid thermal processing
[21], [22], and semibatch chemical reactors [23].

ILC has also found application to systems that do not
have identical repetition. For instance, in [24] an underwa-
ter robot uses similar motions in all of its tasks but with
different task-dependent speeds. These motions are equal-
ized by a time-scale transformation, and a single ILC is
employed for all motions. ILC can also serve as a training
mechanism for open-loop control. This technique is used
in [25] for fast-indexed motion control of low-cost, highly
nonlinear actuators. As part of an identification procedure,
ILC is used in [26] to obtain the aerodynamic drag coeffi-
cient for a projectile. Finally, [27] proposes the use of ILC
to develop high-peak power microwave tubes.

The basic ideas of ILC can be found in a U.S. patent [28]
filed in 1967 as well as the 1978 journal publication [29]
written in Japanese. However, these ideas lay dormant
until a series of articles in 1984 [5], [30]–[32] sparked wide-
spread interest. Since then, the number of publications on
ILC has been growing rapidly, including two special issues
[33], [34], several books [1], [35]–[37], and two surveys [38],
[39], although these comparatively early surveys capture
only a fraction of the results available today.

As illustrated in “Iterative Learning Control Versus
Good Feedback and Feedforward Design,” ILC has clear
advantages for certain classes of problems but is not
applicable to every control scenario. The goal of the pre-

sent article is to provide a tutorial that gives a complete
picture of the benefits, limitations, and open problems of
ILC. This presentation is intended to provide the practic-
ing engineer with the ability to design and analyze a sim-
ple ILC as well as provide the reader with sufficient
background and understanding to enter the field. As such,
the primary, but not exclusive, focus of this survey is on
single-input, single-output (SISO) discrete-time linear sys-
tems. ILC results for this class of systems are accessible
without extensive mathematical definitions and deriva-
tions. Additionally, ILC designs using discrete-time

JUNE 2006 « IEEE CONTROL SYSTEMS MAGAZINE 97

Iterative Learning Control Versus Good
Feedback and Feedforward Design

The goal of ILC is to generate a feedforward control that

tracks a specific reference or rejects a repeating distur-

bance. ILC has several advantages over a well-designed

feedback and feedforward controller. Foremost is that a feed-

back controller reacts to inputs and disturbances and, there-

fore, always has a lag in transient tracking. Feedforward

control can eliminate this lag, but only for known or measur-

able signals, such as the reference, and typically not for dis-

turbances. ILC is anticipatory and can compensate for

exogenous signals, such as repeating disturbances, in

advance by learning from previous iterations. ILC does not

require that the exogenous signals (references or distur-

bances) be known or measured, only that these signals

repeat from iteration to iteration.

While a feedback controller can accommodate variations

or uncertainties in the system model, a feedforward controller

performs well only to the extent that the system is accurately

known. Friction, unmodeled nonlinear behavior, and distur-

bances can limit the effectiveness of feedforward control.

Because ILC generates its open-loop control through prac-

tice (feedback in the iteration domain), this high-performance

control is also highly robust to system uncertainties. Indeed,

ILC is frequently designed assuming linear models and

applied to systems with nonlinearities yielding low tracking

errors, often on the order of the system resolution.

ILC cannot provide perfect tracking in every situation,

however. Most notably, noise and nonrepeating disturbances

hinder ILC performance. As with feedback control, observers

can be used to limit noise sensitivity, although only to the

extent to which the plant is known. However, unlike feedback

control, the iteration-to-iteration learning of ILC provides

opportunities for advanced filtering and signal processing.

For instance, zero-phase filtering [43], which is noncausal,

allows for high-frequency attenuation without introducing lag.

Note that these operations help to alleviate the sensitivity of

ILC to noise and nonrepeating disturbances. To reject nonre-

peating disturbances, a feedback controller used in combina-

tion with the ILC is the best approach.

linearizations of nonlinear systems often yield good results
when applied to the nonlinear systems [10], [22], [40]–[43].

ITERATIVE LEARNING CONTROL OVERVIEW

Linear Iterative Learning Control
System Description
Consider the discrete-time, linear time-invariant (LTI),
SISO system

yj(k) = P(q)uj(k) + d(k), (1)

where k is the time index, j is the iteration index, q is the
forward time-shift operator qx(k) ≡ x(k + 1), yj is the out-
put, uj is the control input, and d is an exogenous signal
that repeats each iteration. The plant P(q) is a proper ratio-
nal function of q and has a delay, or equivalently relative
degree, of m. We assume that P(q) is asymptotically stable.
When P(q) is not asymptotically stable, it can be stabilized
with a feedback controller, and the ILC can be applied to
the closed-loop system.

Next consider the N-sample sequence of inputs and
outputs

uj(k), k ∈ {0, 1, . . . , N − 1},
yj(k), k ∈ {m, m + 1, . . . , N + m − 1},
d(k), k ∈ {m, m + 1, . . . , N + m − 1},

and the desired system output

yd(k), k ∈ {m, m + 1, . . . , N + m − 1}.

The performance or error signal is defined by
ej(k) = yd(k) − yj(k). In practice, the time duration N of the
trial is always finite, although sometimes it is useful for
analysis and design to consider an infinite time duration of

the trials [44]. In this work we use
N = ∞ to denote trials with an infi-
nite time duration. The iteration
dimension indexed by j is usually
considered infinite with
j ∈ {0, 1, 2, . . . }. For simplicity in this
article, unless stated otherwise, the
plant delay is assumed to be m = 1.

Discrete time is the natural
domain for ILC because ILC explicit-
ly requires the storage of past-itera-
tion data, which is typically
sampled. System (1) is sufficiently
general to capture IIR [11] and FIR
[45] plants P(q). Repeating distur-
bances [44], repeated nonzero initial
conditions [4], and systems aug-
mented with feedback and feedfor-
ward control [44] can be captured in

d(k). For instance, to incorporate the effect of repeated
nonzero initial conditions, consider the system

xj(k + 1) = Axj(k) + Buj(k) (2)

yj(k) = Cxj(k), (3)

with xj(0) = x0 for all j. This state-space system is equiv-
alent to

yj(k) = C(qI − A)−1B︸ ︷︷ ︸
P(q)

uj(k) + CAkx0︸ ︷︷ ︸
d(k)

.

Here, the signal d(k) is the free response of the system to
the initial condition x0.

A widely used ILC learning algorithm [1], [35], [38] is

uj+ 1(k) = Q(q)[uj(k) + L(q)ej(k + 1)], (4)

where the LTI dynamics Q(q) and L(q) are defined as the
Q-filter and learning function, respectively. The two-
dimensional (2-D) ILC system with plant dynamics (1) and
learning dynamics (4) is shown in Figure 1.

General Iterative Learning Control Algorithms
There are several possible variations to the learning algo-
rithm (4). Some researchers consider algorithms with lin-
ear time-varying (LTV) functions [42], [46], [47], nonlinear
functions [37], and iteration-varying functions [1], [48].
Additionally, the order of the algorithm, that is, the num-
ber N0 of previous iterations of ui and ei ,
i ∈ { j− N0 + 1, . . . , j} , used to calculate uj+ 1 can be
increased. Algorithms with N0 > 1 are referred to as high-
er-order learning algorithms [26], [36], [37], [44], [49]–[51].
The current error ej+ 1 can also be used in calculating uj+ 1

FIGURE 1 A two-dimensional, first-order ILC system. At the end of each iteration, the error is
filtered through L, added to the previous control, and filtered again through Q. This updated
open-loop control is applied to the plant in the next iteration.

Sample
Time

Sample
Time

j+1j+1

jj

Iteration Iteration

1

0
1

0
0

Q

Control
Signal

L

P

Error

NN−1 1

+ +

+
−

Disturbance Reference

98 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2006

to obtain a current-iteration learning algorithm [52]–[56].
As shown in [57] and elsewhere in this article (see “Cur-
rent-Iteration Iterative Learning Control”), the current-iter-
ation learning algorithm is equivalent to the algorithm (4)
combined with a feedback controller on the plant.

Outline
The remainder of this article is divided into four major
sections. These are “System Representations,” “Analy-
sis,” “Design,” and “Implementation Example.” Time
and frequency-domain representations of the ILC sys-
tem are presented in the “System Representation” sec-
tion. The “Analysis” section examines the four basic
topics of greatest relevance to understanding ILC sys-
tem behavior: 1) stability, 2) performance, 3) transient
learning behavior, and 4) robustness. The “Design” sec-
tion investigates four different design methods: 1) PD
type, 2) plant inversion, 3) H∞ , and 4) quadratically
optimal. The goal is to give the reader an array of tools
to use and the knowledge of when each is appropriate.
Finally, the design and implementation of an iterative
learning controller for microscale robotic deposition
manufacturing is presented in the “Implementation

Example” section. This manufacturing example gives a
quantitative evaluation of ILC benefits.

SYSTEM REPRESENTATIONS
Analytical results for ILC systems are developed using two
system representations. Before proceeding with the analy-
sis, we introduce these representations.

Time-Domain Analysis Using the
Lifted-System Framework
To construct the lifted-system representation, the rational
LTI plant (1) is first expanded as an infinite power series
by dividing its denominator into its numerator, yielding

P(q) = p1q−1 + p2q−2 + p3q−3 + · · · , (5)

where the coefficients pk are Markov parameters [58].
The sequence p1, p2, . . . is the impulse response. Note
that p1 �= 0 since m = 1 is assumed. For the state space
description (2), (3), pk is given by pk = CAk−1B. Stack-
ing the signals in vectors, the system dynamics in (1)
can be written equivalently as the N × N-dimensional
lifted system

Current-Iteration Iterative Learning Control

Current-iteration ILC is a method for incorporating feedback with ILC [52]–[56]. The current-iteration ILC

algorithm is given by

uj+1(k) = Q(q)[uj(k) + L(q)ej(k + 1)] + C(q)ej+1(k)︸ ︷︷ ︸
Feedback control

and shown in Figure A. This learning scheme derives its name from the addition of a learning component in the current iteration

through the term C(q)ej +1(k). This algorithm, however, is identical to the algorithm (4) combined with a feedback controller in the

parallel architecture. Equivalence can be found between these two forms by separating the current-iteration ILC signal into feed-

forward and feedback components as

uj+1(k) = wj+1(k) + C(q)ej+1(k),

where

wj +1(k) = Q(q)[uj (k) + L(q)ej (k + 1)].

Then, solving for the iteration-domain dynamic equation for

w yields

wj +1(k) = Q(q)[wj (k) + (L(q) + q−1C(q))ej (k + 1)].

Therefore, the feedforward portion of the current-itera-

tion ILC is identical to the algorithm (4) with the learn-

ing function L(q) + q−1C(q). The algorithm (4) with

learning function L(q) + q−1C(q) combined with a

feedback controller in the parallel architecture is equiv-

alent to the complete current-iteration ILC.

FIGURE A Current-iteration ILC architecture, which uses a control signal
consisting of both feedforward and feedback in its learning algorithm.
This architecture is equivalent to the algorithm (4) combined with a
feedback controller in the parallel architecture.

uj

wj
ej

yd
−

C G

Feedback
Controller

Plant

yj

L

ILC

MemoryMemory

Q

JUNE 2006 « IEEE CONTROL SYSTEMS MAGAZINE 99




yj(1)

yj(2)

...

yj(N)




︸ ︷︷ ︸
yj

=




p1 0 · · · 0
p2 p1 · · · 0
...

...
. . .

...

pN pN−1 · · · p1




︸ ︷︷ ︸
P




uj(0)

uj(1)

...

uj(N − 1)




︸ ︷︷ ︸
uj

+




d(1)

d(2)
...

d(N)




︸ ︷︷ ︸
d

, (6)

and




ej(1)

ej(2)

...

ej(N)




︸ ︷︷ ︸
ej

=




yd(1)

yd(2)

...

yd(N)




︸ ︷︷ ︸
yd

−




yj(1)

yj(2)

...

yj(N)




︸ ︷︷ ︸
yj

.

The components of yj and d are shifted by one time step to
accommodate the one-step delay in the plant, ensuring
that the diagonal entries of P are nonzero. For a plant with
m-step delay, the lifted system representation is




yj(m)

yj(m + 1)

...

yj(m + N − 1)


 =




pm 0 · · · 0
pm+1 pm · · · 0

...
...

. . .
...

pm+N−1 pm+N−2 · · · pm




×




uj(0)

uj(1)

...

uj(N − 1)


 +




d(m)

d(m + 1)
...

d(m + N − 1)


 ,




ej(m)

ej(m + 1)

...

ej(m + N − 1)


 =




yd(m)

yd(m + 1)

...

yd(m + N − 1)




−




yj(m)

yj(m + 1)

...

yj(m + N − 1)


 .

The lifted form (6) allows us to write the SISO time- and
iteration-domain dynamic system (1) as a multiple-input,
multiple-output (MIMO) iteration-domain dynamic sys-
tem. The time-domain dynamics are contained in the struc-
ture of P, and the time signals uj, yj, and d are contained in
the vectors uj, yj, and d.

Likewise, the learning algorithm (4) can be written in
lifted form. The Q-filter and learning function can be non-
causal functions with the impulse responses

Q(q) = · · · + q−2q2 + q−1q1 + q0 + q1q−1 + q2q−2 + · · ·

and

L(q) = · · · + l−2q2 + l−1q1 + l0 + l1q−1 + l2q−2 + · · · ,

respectively. In lifted form, (4) becomes




uj+1(0)

uj+1(1)

...

uj+1(N − 1)




︸ ︷︷ ︸
uj+1

=




q0 q−1 · · · q−(N−1)

q1 q0 · · · q−(N−2)

...
...

. . .
...

qN−1 qN−2 · · · q0




︸ ︷︷ ︸
Q







uj(0)

uj(1)

...

uj(N − 1)




︸ ︷︷ ︸
uj

+




l0 l−1 · · · l−(N−1)

l1 l0 · · · l−(N−2)

...
...

. . .
...

lN−1 lN−2 · · · l0




︸ ︷︷ ︸
L




ej(1)

ej(2)

...

ej(N)




︸ ︷︷ ︸
ej




. (7)

When Q(q) and L(q) are causal functions, it follows that
q−1 = q−2 = · · · = 0 and l−1 = l−2 = · · · = 0, and thus the
matrices Q and L are lower triangular. Further distinctions
on system causality can be found in “Causal and Non-
causal Learning.”

The matrices P, Q, and L are Toeplitz [59], meaning that
all of the entries along each diagonal are identical. While
LTI systems are assumed here, the lifted framework can
easily accommodate an LTV plant, Q-filter, or learning
function [42], [60]. The construction for LTV systems is the
same, although P, Q, and L are not Toeplitz in this case.

Frequency-Domain Analysis Using the
z-Domain Representation
The one-sided z-transformation of the signal {x(k)}∞k=0 is
X(z) = ∑∞

k=0 x(k)z−1 , and the z-transformation of a system
is obtained by replacing q with z. The frequency response
of a z-domain system is given by replacing z with eiθ for
θ ∈ [−π, π]. For a sampled-data system, θ = π maps to the
Nyquist frequency. To apply the z-transformation to the ILC
system (1), (4), we must have N = ∞ because the

100 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2006

z-transform requires that signals be defined over an infi-
nite time horizon. Since all practical applications of ILC
have finite trial durations, the z-domain representation is
an approximation of the ILC system [44]. Therefore, for the
z-domain analysis we assume N = ∞, and we discuss
what can be inferred about the finite-duration ILC system
[44], [56], [61]–[64].

The transformed representations of the system in (1)
and learning algorithm in (4) are

Yj(z) = P(z)Uj(z) + D(z) (8)

and

Uj+1(z) = Q(z)[Uj(z) + zL(z)Ej(z)], (9)

respectively, where Ej(z) = Yd(z) − Yj(z). The z that multi-
plies L(z) emphasizes the forward time shift used in the learn-
ing. For an m time-step plant delay, zm is used instead of z.

ANALYSIS

Stability
The ILC system (1), (4) is asymptotically stable (AS) if there
exists ū ∈ R such that

|uj(k)| ≤ ū for all k = {0, . . . , N − 1} and j = {0, 1, . . . , },

and, for all k ∈ {0, . . . , N − 1},

lim
j→∞

uj(k) exists.

We define the converged control as u∞(k) = limj→∞ uj(k).
Time-domain and frequency-domain conditions for AS of
the ILC system are presented here and developed in [44].

Substituting ej = yd − yj and the system dynamics (6)
into the learning algorithm (7) yields the closed-loop itera-
tion domain dynamics

uj+1 = Q(I − LP)uj + QL(yd − d). (10)

Let ρ(A) = maxi |λi(A)| be the spectral radius of the matrix
A, and λi(A) the ith eigenvalue of A. The following AS
condition follows directly.

Theorem 1 [44]
The ILC system (1), (4) is AS if and only if

ρ(Q(I − LP)) < 1. (11)

When the Q-filter and learning function are causal, the
matrix Q(I − LP) is lower triangular and Toeplitz with
repeated eigenvalues

λ = q0(1 − l0 p1). (12)

In this case, (11) is equivalent to the scalar condition

|q0(1 − l0 p1)| < 1. (13)

Causal and Noncausal Learning

O ne advantage that ILC has over traditional feedback and

feedforward control is the possibility for ILC to anticipate

and preemptively respond to repeated disturbances. This

ability depends on the causality of the learning algorithm.

Definition: The learning algorithm (4) is causal if uj +1(k)

depends only on uj (h) and ej (h) for h ≤ k. It is noncausal if

uj +1(k) is also a function of uj (h) or ej (h) for some h > k.

Unlike the usual notion of noncausality, a noncausal

learning algorithm is implementable in practice because the

entire time sequence of data is available from all previous

iterations. Consider the noncausal learning algorithm

uj +1(k) = uj (k) + kpej (k + 1) and the causal learning algo-

rithm uj +1(k) = uj (k) + kpej (k). Recall that a disturbance d(k)

enters the error as ej (k) = yd(k) − P(q)uj (k) − d(k). There-

fore, the noncausal algorithm anticipates the disturbance

d(k + 1) and preemptively compensates with the control

uj +1(k). The causal algorithm does not anticipate since

uj +1(k) compensates for the disturbance d(k) with the same

time index k.

Causality also has implications in feedback equivalence

[63], [64], [111], [112], which means that the converged con-

trol u∞ obtained in ILC could be obtained instead by a feed-

back controller. The results in [63], [64], [111], [112] are for

continuous-time ILC, but can be extended to discrete-time

ILC. In a noise-free scenerio, [111] shows that there is feed-

back equivalence for causal learning algorithms, and further-

more that the equivalent feedback controller can be obtained

directly from the learning algorithm. This result suggests that

causal ILC algorithms have little value since the same control

action can be provided by a feedback controller without the

learning process. However, there are critical limitations to the

equivalence that may justify the continued examination and

use of causal ILC algorithms. For instance, the feedback

control equivalency discussed in [111] is limited to a noise-

free scenario. As the performance of the ILC increases, the

equivalent feedback controller has increasing gain [111]. In a

noisy environment, high-gain feedback can degrade perfor-

mance and damage equipment. Moreover, this equivalent

feedback controller may not be stable [63]. Therefore, causal

ILC algorithms are still of significant practical value.

When the learning algorithm is noncausal, the ILC does,

in general, preemptively respond to repeating disturbances.

Except for special cases, there is no equivalent feedback

controller that can provide the same control action as the

converged control of a noncausal ILC since feedback control

reacts to errors.

JUNE 2006 « IEEE CONTROL SYSTEMS MAGAZINE 101

Using (8), (9), iteration domain dynamics for the
z-domain representation are given by

Uj+1(z) = Q(z) [1 − zL(z)P(z)] Uj(z)

+ zQ(z)L(z) [Yd(z) − D(z)] . (14)

A sufficient condition for stability of the transformed sys-
tem can be obtained by requiring that Q(z)[1 − zL(z)P(z)]
be a contraction mapping. For a given z-domain system
T(z), we define ‖T(z)‖∞ = supθ∈[−π,π] |T(eiθ)|.

Theorem 2 [44]
If

‖Q(z)[1 − zL(z)P(z)]‖∞ < 1, (15)

then the ILC system (1), (4) with N = ∞ is AS.
When Q(z) and L(z) are causal functions, (15) also

implies AS for the finite-duration ILC system [44], [52].
The stability condition (15) is only sufficient and, in gener-
al, much more conservative than the necessary and suffi-
cient condition (11) [4]. Additional stability results
developed in [44] can also be obtained from 2-D systems
theory [61], [65] of which ILC systems are a special case
[66]–[68].

Performance
The performance of an ILC system is based on the asymp-
totic value of the error. If the system is AS, the asymptotic
error is

e∞(k) = lim
j→∞

ej(k)

= lim
j→∞

(yd(k) − P(q)uj(k) − d(k))

= yd(k) − P(q)u∞(k) − d(k).

Performance is often judged by comparing the difference
between the converged error e∞(k) and the initial error
e0(k) for a given reference trajectory. This comparison is
done either qualitatively [5], [12], [18], [22] or quantitatively
with a metric such as the root mean square (RMS) of the
error [43], [46], [69].

If the ILC system is AS, then the asymptotic error is

e∞ = [I − P[I − Q(I − LP)]−1QL](yd − d) (16)

for the lifted system and

E∞(z) = 1 − Q(z)
1 − Q(z)[1 − zL(z)P(z)]

[Yd(z) − D(z)] (17)

for the z-domain system. These results are obtained by
replacing the iteration index j with ∞ in (6), (7) and (8), (9)
and solving for e∞ and E∞(z), respectively [1].

Many ILC algorithms are designed to converge to
zero error, e∞(k) = 0 for all k, independent of the refer-
ence or repeating disturbance. The following result
gives necessary and sufficient conditions for conver-
gence to zero error.

Theorem 3 [57]
Suppose P and L are not identically zero. Then, for the ILC
system (1), (4), e∞(k) = 0 for all k and for all yd and d, if
and only if the system is AS and Q(q) = 1.

Proof
See [57] for the time-domain case and, assuming N = ∞,
[11] for the frequency-domain case.

Many ILC algorithms set Q(q) = 1 and thus do not
include Q-filtering. Theorem 3 substantiates that this
approach is necessary for perfect tracking. Q-filtering,
however, can improve transient learning behavior and
robustness, as discussed later in this article.

More insight into the role of the Q-filter in performance
is offered in [70], where the Q-filter is assumed to be an
ideal lowpass filter with unity magnitude for low frequen-
cies [0, θc] and zero magnitude for high frequencies
θ ∈ (θc, π]. Although not realizable, the ideal lowpass filter
is useful here for illustrative purposes. From (17), E∞(eiθ)

for the ideal lowpass filter is equal to zero for θ ∈ [0, θc]
and equal to Yd(eiθ) − D(eiθ) for θ ∈ (θc, π]. Thus, for fre-
quencies at which the magnitude of the Q-filter is 1, perfect
tracking is achieved; for frequencies at which the magni-
tude is 0, the ILC is effectively turned off. Using this
approach, the Q-filter can be employed to determine which
frequencies are emphasized in the learning process.
Emphasizing certain frequency bands is useful for control-
ling the iteration domain transients associated with ILC, as
discussed in the “Robustness” section.

Transient Learning Behavior
We begin our discussion of transient learning behavior with
an example illustrating transient growth in ILC systems.

Example 1
Consider the ILC system (1), (4) with plant dynamics
yj(k) = [q/(q − .9)2]uj(k) and learning algorithm
uj+1(k) = uj(k) + .5ej(k + 1). The leading Markov parame-
ters of this system are p1 = 1, q0 = 1, and l0 = 0.5. Since
Q(q) and L(q) are causal, all of the eigenvalues of the lifted
system are given by (12) as λ = 0.5. Therefore, the ILC
system is AS by Theorem 1. The converged error is identi-
cally zero because the Q-filter is unity. The trial duration is
set to N = 50, and the desired output is the smoothed-step
function shown in Figure 2. The 2-norm of ej is plotted in
Figure 3 for the first 180 trials. Over the first 12 iterations,
the error increases by nine orders of magnitude.

Example 1 shows the large transient growth that can
occur in ILC systems. Transient growth is problematic in

102 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2006

practice because neither the rate nor the magnitude of the
growth is closely related to stability conditions. Recall that
the eigenvalues of the closed-loop iteration dynamics in
Example 1 are at λ = 0.5, which is well within the unit
disk. Furthermore, it is difficult to distinguish transient
growth from instability in practice because the initial
growth rate and magnitude are so large. Large transient
growth is a fundamental topic in ILC and preventing it is
an essential objective in ILC design. Insights into the cause
of large transient growth in ILC systems are presented in
[4], [7], [43], [71], and [72].

To avoid large learning transients, monotonic conver-
gence is desirable. The system (1), (4) is monotonically con-
vergent under a given norm ‖ • ‖ if

‖e∞ − ej+1‖ ≤ γ ‖e∞ − ej‖,

for j ∈ {1, 2, . . . }, where 0 ≤ γ < 1 is the convergence rate.
We now develop conditions for monotonic convergence.

By manipulating the system dynamics (6), (7) and the
asymptotic-error result (16), we obtain

e∞ − ej+1 = PQ(I − LP)P−1(e∞ − ej). (18)

When P(q), Q(q), and L(q) are causal (that is, P, Q, and L
are Toeplitz and lower triangular), the matrices P, Q, and L
commute, and (18) reduces to

(e∞ − ej+1) = Q(I − LP)(e∞ − ej).

For the z-domain system, the error dynamics can be simi-
larly obtained as

[E∞(z) − Ej+1(z)] = Q(z) [1 − zL(z)P(z)]
[
E∞(z) − Ej(z)

]
.

(19)

Let σ̄ (·) be the maximum singular value and let ‖ · ‖2
denote the Euclidean norm. Using (18) and (19) we obtain
the following monotonic convergence conditions.

Theorem 4 [44]
If the ILC system (1), (4) satisfies

γ1
�= σ̄

(
PQ(I − LP)P−1

)
< 1, (20)

then

‖e∞ − ej+1‖2 < γ1‖e∞ − ej‖2

for all j ∈ {1, 2, . . . }.

Theorem 5 [11]
If the ILC system (1), (4) with N = ∞ satisfies

γ2
�= ‖Q(z) [1 − zL(z)P(z)]‖∞ < 1, (21)

then

∥∥E∞(z) − Ej+1(z)
∥∥

∞ < γ2
∥∥E∞(z) − Ej(z)

∥∥
∞

for all j ∈ {1, 2, . . . }.
When Q(z) and L(z) are causal functions, (21) also

implies ‖e∞ − ej+1‖2 < γ2‖e∞ − ej‖2 for j ∈ {1, 2, . . . } for
the ILC system with a finite-duration N [44]. Note that the
z-domain monotonic convergence condition (21) is identi-
cal to the stability condition (15) given in Theorem 2. Thus,
when Q(z) and L(z) are causal functions, the stability con-
dition (15) provides stability and monotonic convergence
independent of the iteration duration N. In contrast, the
monotonic convergence condition of the lifted system (20)
is a more stringent requirement than the stability condition
(11), and both are specific to the iteration duration N under
consideration.

In some cases, the learning transient behavior of an ILC
system may be more important than stability. Some
researchers have argued that unstable ILC algorithms can
be effective if their initial behavior quickly decreases the
error [52], [56], [71]. These algorithms can then be said to
satisfy a “practical stability” condition because the learn-
ing can be stopped at a low error before the divergent
learning transient behavior begins.

FIGURE 3 Error 2-norm for Example 1. Despite the use of a
smoothed step, the tracking error grows rapidly over the first ten

0 20 40 60 80 100 120 140 160 180
10−10

10−5

100

105

1010

Iteration (j)

||e
j||

2

FIGURE 2 Reference command for Example 1. This smoothed step
is generated from a trapezoidal velocity profile to enforce a bound
on the acceleration. Industrial motion controllers often use
smoothed references.

0 10 20 30 40 50

0

1

Time (k)

y d

JUNE 2006 « IEEE CONTROL SYSTEMS MAGAZINE 103

For an AS ILC system, the worst-case learning tran-
sients can be upper bounded by a decaying geometric
function

‖e∞ − ej‖2 < γ̄ jκ̄‖e∞ − e0‖2,

where |γ̄ | < 1. This result is well known for stable LTI
discrete-time systems, and the bounding function can be
constructed using Lyapunov analysis [58]. This result is
specific to the trial duration N under consideration. In gen-
eral, altering the trial duration alters the bounding function.

Robustness
Implicit in the ILC formulation is uncertainty in the plant
dynamics. If the plant were known exactly, more direct
methods could be used to track a given reference. As such,
robustness is a central issue in ILC. Here, we consider
robustness to uncertainty as related to stability and monot-
onicity. This discussion provides insight into the limita-
tions that safe operation requirements (good transients and
stability) impose on the achievable performance of a learn-
ing algorithm. We then consider stability robustness to
time-delay error in the system model and, finally, the
effects of nonrepeating disturbances on performance.

A key question is whether or not a given AS ILC system
remains AS to plant perturbations. Consider the scenario
in which Q(q) = 1, which achieves zero converged error,
and L(q) is causal [4]. Then the stability condition (13) is
equivalent to |1 − l0 p1| < 1. Therefore, assuming l0 and p1
are both nonzero, the ILC system is AS if and only if

sgn(p1) = sgn(l0), (22)

and

l0 p1 ≤ 2, (23)

where sgn is the signum function.
This result shows that ILC can achieve zero con-

verged error for a plant using only knowledge of the
sign of p1 and an upper bound on |p1|. Perturbations in
the parameters p2, p3, . . . do not destabilize the ILC sys-
tem in this scenario. Since (23) can be satisfied for an
arbitrarily large upper bound on |p1| by choosing |l0| suf-
ficiently small, we conclude that ILC systems can be sta-
bly robust to all perturbations that do not change the
sign of p1 . Robust stability, however, does not imply
acceptable learning transients.

Consider the uncertain plant

P(q) = P̂(q)[1 + W(q)�(q)], (24)

where P̂(q) is the nominal plant model, W(q) is known and
stable, and �(q) is unknown and stable with ‖�(z)‖∞ < 1.
Robust monotonicity is given by the following theorem.

Theorem 6
If

|W(eiθ)| ≤ γ ∗ − |Q(eiθ)||1 − eiθ L(eiθ)P̂(eiθ)|
|Q(eiθ)||eiθ L(eiθ)P̂(eiθ)|

. (25)

for all θ ∈ [−π, π], then the ILC system (1), (4), (24) with
N = ∞ is monotonically convergent with convergence rate
γ ∗ < 1.

Proof
From Theorem 5, the ILC system is monotonically conver-
gent with rate γ ∗ < 1 if

γ ∗ ≥ ‖Q(z)[1 − zL(z)P̂(z)[1 + W(z)�(z)]]‖∞
= max

θ
|Q(eiθ)[1 − eiθ L(eiθ)P̂(eiθ)[1 + W(eiθ)�(eiθ)]]|

= max
θ

[|Q(eiθ)[1 − eiθ L(eiθ)P̂(eiθ)]|

+ |(Q(eiθ)eiθ L(eiθ)P̂(eiθ)W(eiθ)|],

which is equivalent to (25).
Unlike the stability robustness condition (22), (23),

which depends only on the first Markov parameters, the
monotonic robustness condition (25) depends on the
dynamics of P(q), Q(q), and L(q). Examining (25), we see
that the most direct way to increase the robustness |W(eiθ)|
at a given θ is to decrease the Q-filter gain |Q(eiθ)|. Recall
from the “Performance” section that decreasing |Q(eiθ)|
negatively impacts the converged performance. Therefore,
when we consider a more practical measure of robustness,
such as monotonic robustness, there is a tradeoff between
performance and robustness, with the Q-filter acting as the
tuning knob.

Uncertainty in the system time delay may also lead to
stability and learning transient problems. Recall that the
error is forward shifted in the learning algorithm by the
system delay m. If m is not the true delay, then the entries
of the matrix P are shifted diagonally [73]. If, instead, the
plant has an unknown time-varying delay, then each row
of P is shifted left or right according to the system delay at
that time. Either case can lead to loss of stability or poor
learning transients, and currently there is no complete
analysis technique for determining robustness to time-
delay error. However, several ILC algorithms have been
developed for dealing with a constant time-delay error
[50], [74]–[77].

As a robust performance issue, we consider the
effects of noise, nonrepeating disturbances, and initial
condition variation on performance. All of these effects
can be considered together by adding an iteration-
dependent exogenous signal dj to (1). The iteration-
dependent signal prevents the error from converging to
e∞. However, if dj is bounded, then the error converges

104 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2006

to a ball centered around e∞ . Ideally, we do not want
the ILC to attempt to learn from dj, so we might expect
that slower learning would decrease the sensitivity to dj.
However, the counter-intuitive result presented in [78]
shows that if dj is a stationary stochastic process, then
learning should be fast to minimize the error spectral
density. That is, we should choose Q(q), P(q), and L(q)
so that |Q(eiθ)[1 − eiθ L(eiθ)P(eiθ)]| � 1 at frequencies at
which the spectral density of dj is large. We cannot
expect to find L(eiθ) such that 1 − eiθ L(eiθ)P(eiθ) is small
for all perturbations of P, so we see once again that
decreasing the Q-filter bandwidth is the best way to
improve robustness. The tradeoff here is between nomi-
nal performance and robust performance.

Performance robustness to noise, nonrepeating distur-
bances, and initial condition variation can also be handled
in an optimal stochastic ILC framework [16], [79]–[81].
Alternatively, the noise robustness problem can be
addressed by adding online observers [42]. As a simple ad
hoc approach to dealing with noise and nonrepeating dis-
turbances, we recommend running several trials between
updates and using the averages of the trials to update uj+1.
Robustness to initial condition variation is discussed in
[82]–[86]. Although [82]–[86] consider continuous-time
systems, parallels for many of the results contained therein
can be obtained for discrete-time systems. Additional ref-
erences for some of the results beyond the scope of this
review can be found in “Extensions to Time-Varying, Con-
tinuous-Time, Multivariable and Nonlinear Systems.”

DESIGN
From a practical perspective, the goal of ILC is to generate
an open-loop signal that approximately inverts the plant’s
dynamics to track the reference and reject repeating distur-
bances. Ideally, ILC learns only the repeating disturbance
and ignores noise and nonrepeating disturbances. We
emphasize that ILC is an open-loop control and has no
feedback mechanism to respond to unanticipated, nonre-
peating disturbances. As such, a feedback controller in
combination with ILC can be beneficial. “Using Feedback
Control with Iterative Learning Control” illustrates the two
basic forms for combining ILC with feedback algorithms.

In the following sections, we discuss four of the most
popular ILC algorithms and design techniques. The PD-
type learning function is a tunable design that can be
applied to a system without extensive modeling and
analysis. The plant inversion learning function converges
quickly but relies heavily on modeling and can be sensitive
to model errors. The H∞ design technique can be used to
design a robustly monotonically convergent ILC but at the
expense of performance. The quadratically optimal (Q-
ILC) designs use a quadratic performance criterion to
obtain an optimal ILC. An experimental comparison of the
P-type, plant inversion, and Q-ILC designs on a rotary
robot are presented in [40].

PD-Type and Tunable Designs
As the name implies, the PD-type learning function con-
sists of a proportional and derivative gain on the error. The
learning function used in Arimoto’s original work [5] on
ILC is a continuous-time, D-type learning function. The P-,
D-, and PD-type learning functions are arguably the most
widely used types of learning functions, particularly for
nonlinear systems [5], [12], [39], [81], [83], [86]–[92]. These
learning functions rely on tuning and do not require an
accurate model for implementation, similar to PID feed-
back control. The integrator, or I term, is rarely used for
learning functions because ILC has a natural integrator
action from one trial to the next. The discrete-time, PD-
type learning function can be written as

uj+1(k) = uj(k) + kpej(k + 1) + kd[ej(k + 1) − ej(k)], (26)

where kp is the proportional gain and kd is the derivative
gain. Some authors [45] use the proportional gain on ej(k)
rather than ej(k + 1).

From Theorem 1, the ILC system with the PD-type
learning algorithm is AS if and only if |1 − (kp + kd)

p1| < 1. Clearly, when p1 is known, it is always possible to
find kd and kp such that the ILC system is AS. Monotonic
convergence, however, is not always possible using a PD-
type learning algorithm. However, when the iteration is
sufficiently short, monotonic convergence can be achieved
using PD-type learning. Although this relationship is
shown for continuous-time systems in [94], parallel results
can be obtained for discrete-time systems. Also, condi-
tions on the plant dynamics under which a P-type (kd = 0)
learning algorithm is monotonic are given in [93]. In [45]
an optimization-based design that indirectly attempts to
minimize the convergence rate is presented, but monoton-
ic convergence is not guaranteed. The most favorable and
generally applicable approach to achieving monotonic
convergence is to modify the learning algorithm to
include a lowpass Q-filter [4], [7], [41], [70]. As discussed
earlier, the lowpass Q-filter can be used to disable learn-
ing at high frequencies, which is useful for satisfying the
monotonic convergence condition in Theorem 5. The Q-
filter also has the benefits of added robustness and high-
frequency noise filtering.

Just as with PD feedback controllers, the most commonly
employed method for selecting the gains of the PD-type
learning function is by tuning [5], [6], [10], [12], [17], [27],
[43]. When a Q-filter is used, the filter type (for example,
Butterworth, Chebyshev, Gaussian, or FIR) and order are
specified, and the bandwidth of the filter is used as the tun-
ing variable. Despite the popularity of this approach, ILC
tuning guidelines comparable to the Ziegler-Nichols [95]
rules for PID feedback control are not available. In lieu of
formal guidelines, we offer the following suggestions. The
goals of the tuning include both good learning transients
and low error. For each set of gains kp and kd, the learning is

JUNE 2006 « IEEE CONTROL SYSTEMS MAGAZINE 105

reset and run for sufficient iterations to determine the tran-
sient behavior and asymptotic error. Initially, the learning
gains and filter bandwidth are set low. After a stable base-
line transient behavior and error performance have been

obtained, the gains and bandwidth can be increased.
Depending on the application, the learning gains influence
the rate of convergence, whereas the Q-filter influences the
converged error performance. Increasing the Q-filter

The lifted system framework can accommodate discrete-time

LTV plants, learning functions, and Q-filters [1], [42], [60]. For

example, consider the LTV plant

P(k, q) = p1(k)q−1 + p2(k)q−2 + p3(k)q−3 + · · · .

The lifted form of P(k, q) is




yj(1)

yj(2)
...

yj(N)




︸ ︷︷ ︸
yj

=




p1(0) 0 · · · 0
p2(1) p1(1) · · · 0

...
...

. . .
...

pN(N − 1) pN−1(N − 1) · · · p1(N − 1)




︸ ︷︷ ︸
PLTV

×




uj(0)

uj(1)
...

uj(N − 1)




︸ ︷︷ ︸
uj

+




d(1)

d(2)
...

d(N)




︸ ︷︷ ︸
d

.

Unlike P in (6), PLTV is not Toeplitz, although both P and PLTV are

iteration-invariant. Therefore, the closed-loop dynamics in the itera-

tion domain for P(k, q) is given by (10) with P replaced by PLTV . It

is easy to verify that AS and monotonic convergence for the LTV

plant are given by Theorems 1 and 4, respectively, with P replaced

by PLTV in (11) and (20).

For continuous-time LTI systems, stability, performance, and

monotonic convergence results are available in the frequency

domain [1], [52], [113], [114]. Results for LTV continuous-time

systems can be found in [5], [36], [115]. For square multiple-

input multiple-output (MIMO) systems, extensions of the above

results are generally straightforward. For nonsquare MIMO sys-

tems, see [37], [113], [116] for further detail.

Nonlinear systems have also received a lot of focus in ILC

research, both in analysis and algorithm design. We can broadly

separate nonlinear systems into two groups, namely, those that

are affine in the control input and those that are not. Systems

that are affine in the control are assumed to have the form

ẋ(t) = f (x(t)) + B(x(t))u(t)

y(t) = g(x(t)),

where x is the system states, u is the system input, and y is the

system output. This type of system is examined in [8], [36], [50],

[85], [89], and [117]–[120]. A special case of this type of system is

an n-link robot [39] described by

Mr(q)q̈ − Cr(q,q̇)q̇−gr(q) − dr(q,q̇) = τ,

where q, q̇ and q̈ are n × 1 vectors of link positions, velocities,

and accelerations; τττ is the n × 1 vector of torque inputs for

each link; Mr(q) is a symmetric positive-definite n × n matrix of

link inertias; Cr(q, q̇) is the n × n Coriolis and centripetal accel-

eration matrix; gr(q) is the n × 1 gravitational force vector; and

dr(q, q̇) is the n × 1 friction force vector. ILC for nonlinear robot

dynamics is examined in [90] and [121]–[123].

While ILC for affine nonlinear systems uses a variety of

learning algorithms, one of the key assumptions common to all

of these algorithms is that the nonlinear system is smooth, which

is often expressed as a global Lipshitz constraint on each of the

functions [36], [86], [89], [117], [124].

|f (x1) − f (x2)| ≤ fo|x1 − x2|
|B(x1) − B(x2)| ≤ bo|x1 − x2|
|g(x1) − g(x2)| ≤ go|x1 − x2|.

The Lipshitz constants f0, b0, g0 are used in a contraction

mapping to demonstrate stability of the nonlinear ILC system. In

addition to stability, research on nonlinear ILC includes perfor-

mance [8], [118], [124], learning transient behavior [119], [121],

and robustness to initial condition variation [36], [50], [85], [86],

[120], repeating disturbances [36], [50], [86], [120], and model

uncertainty [36], [50], [89].

Nonaffine systems have the form

ẋ(t) = f (x(t), u(t)),

y(t) = g(x(t)),

and ILC for this system type is examined in [36], [37], [92]. Robust-

ness of this system type is covered in [37], [92].

ILC has also been extended to discrete-time nonlinear sys-

tems. While obtaining discrete-time models of nonlinear systems

may be nontrivial, the results are often simpler than their continu-

ous-time counterparts and are consistent with the digital implemen-

tation typical of ILC controllers. These works include [125]–[132] for

affine systems and [133], [134] for nonaffine systems.

Another way to analyze and design ILC for nonlinear sys-

tems is to treat the nonlinearities as perturbations to the lin-

earized system. When the system is under feedback control, it is

likely that the trajectory remains in a neighborhood of the refer-

ence trajectory. In this case, the nonlinearities can be evaluated

along the reference trajectory to yield additive LTV system and

signal perturbations that are iteration independent [87]. There-

fore, the nonlinearities can be accounted for in design with

model uncertainty [9], [10], [12], [17], [22], [41]–[43], [56].

Extensions to Time-Varying, Continuous-Time, Multivariable, and Nonlinear Systems

106 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2006

bandwidth decreases robustness but improves performance,
whereas decreasing the bandwidth has the opposite effect.
We caution that large transients can appear quickly, as
demonstrated in Example 1. The signals must be monitored
closely for several iterations beyond the apparent conver-
gence for signs of high-frequency growth.

In [4] a two-step tuning method is recommended using
an experimentally obtained frequency response of the
system. The approach is based on satisfying the AS and
monotonic convergence condition in (15), which can be
rewritten as

|1 − eiθ L(eiθ)P(eiθ)| <
1

|Q(eiθ)| ,

for all θ ∈ [−π, π]. Using a Nyquist plot of eiθ L(eiθ)P(eiθ),
the learning gains are tuned to maximize the range
θ ∈ [0, θc] over which eiθ L(eiθ)P(eiθ) lies inside the unit cir-

cle centered at 1. The Q-filter bandwidth is selected last to
satisfy the stability condition.

Plant Inversion Methods
Plant inversion methods use models of the inverted plant
dynamics as the learning function. The discrete-time plant
inversion ILC algorithm is given by

uj+1(k) = uj(k) + P̂−1(q)ej(k).

By rewriting the learning algorithm as uj+1(k) = uj(k)+
q−1P̂−1(q)ej(k + 1), we see that the plant-inversion learning
function is L(q) = q−1P̂−1(q), which is causal and has zero
relative degree. Assuming that P̂(q) is an exact model of the
plant, it can be verified from Theorem 4 or Theorem 5 that
the convergence rate is γ = 0. That is, convergence occurs
in just one iteration and the converged error is e∞ ≡ 0.

As presented here, ILC uses open-loop control action only,

which cannot compensate for nonrepeating disturbances.

Thus, in most physical implementations, a well-designed feedback

controller must be used in combination with ILC. In many cases, a

feedback controller already exists on the system, and ILC can be

implemented without modifying the feedback controller.

ILC can be combined with a feedback loop in two ways as

shown in Figures B and C. In this work, we refer to the first

arrangement as serial because the ILC control input is applied to

the reference before the feedback loop and the second arrange-

ment as parallel because the ILC control input and feedback con-

trol input are combined. The feedback controller modifies the

input/output dynamics with regard to the ILC depending on the par-

ticular arrangement. For the serial arrangement, the dynamics are

yj = (1 + GC)−1GC︸ ︷︷ ︸
P

uj + (1 + GC)−1GCyd︸ ︷︷ ︸
d

.

For the parallel arrangement, the dynamics are

yj = (1 + GC)−1G︸ ︷︷ ︸
P

uj + (1 + GC)−1GCyd︸ ︷︷ ︸
d

.

Note that setting the ILC input uj to zero in both cases results in

the standard feedback-controlled response to the reference yd .

Therefore, in both of these arrangements, the ILC can be disabled

whenever nonrepeating reference trajectories are used.

FIGURE B. Serial architecture, which alters the reference signal
to the system [4], [135]. This concept is useful when applying
ILC to a preexisting system that uses a commercial controller
that does not allow direct access to modifying the control sig-
nal to the plant.

ILC

uj ej

yd
−

C G

Feedback
Controller

Plant

yj

L Memory

MemoryQ

FIGURE C. Parallel architecture, which directly alters the control
signal to the plant [11]. This architecture may be more intuitive to
motion control designers who add feedforward signals directly to
the control signal for improved tracking performance. The indi-
vidual control contributions from the ILC and feedback controller
are also easily separable in this architecture. As the ILC con-
verges, the feedback controller applies less effort.

uj

ej
yd

−
C G

Feedback
Controller

Plant

yj

L
ILC

Memory

Memory

Q

Using Feedback Control with Iterative Learning Control

JUNE 2006 « IEEE CONTROL SYSTEMS MAGAZINE 107

One of the immediate difficulties with the plant inver-
sion approach occurs when dealing with nonminimum
phase systems, in which direct inversion of the plant P(q)

results in an unstable filter. Although finite-duration itera-
tions ensure bounded signals, the unstable filter undoubted-
ly generates undesirably large control signals. This problem
can be avoided by using a stable inversion approach, which
results in a noncausal learning function [96], [97]. For non-
linear systems, direct inversion of the dynamics may be dif-
ficult. However, in some cases, inversion of the dynamics
linearized around the dominant operating conditions may
be sufficient to achieve good results [7], [98].

Whether P(q) is minimum phase or not, the success of
the plant inversion method ultimately depends on the
accuracy of the model. A mismatch between the model
P̂(q) and the actual dynamics P(q) prevents convergence
from occurring in one iteration. Furthermore, mismatch
can lead to poor transient behavior. Consider using the
plant-inversion learning function with the uncertain sys-
tem (24). From Theorem 6, the uncertain system is monoto-
nically convergent with a rate better than γ ∗ if
|W(eiθ)| < γ ∗ for θ ∈ [−π, π], where W(q) is the uncertain-
ty weighting function. If at a given θ0, |W(eiθ0)| ≥ 1, signi-
fying an uncertainty greater than 100%, then the system
will not be robustly monotonically convergent. Since
model uncertainty of greater than 100% is common at high
frequencies, the plant inversion algorithm is not robustly
monotonically convergent. To avoid poor transients associ-
ated with model uncertainty, a lowpass Q-filter is typically
employed [7], [99]. By setting the filter cutoff to a suffi-
ciently low frequency, frequencies where uncertainty is
greater than 100% can be disabled in the learning function
and robust monotonicity can be achieved.

H∞ Methods
H∞ design methods offer a systematic approach to ILC
design. One approach is summarized as follows [11], [70].
The goal is to find the learning function L(q) that offers the
fastest convergence rate for a given Q-filter or, equivalently,
to solve the model matching problem

L∗(z) = arg min
L

‖Q(z)(I − zL(z)P(z))‖∞ .

Dropping the complex argument for notational conve-
nience, this model matching problem can be written equiv-
alently as a lower linear fractional transform,

Q(I − zLP) = G11 + G12L(I − G22L)−1G21 = FL(G, L),

where

G =
[

G11 G12
G21 G22

]
=

[
Q Q

−zP 0

]
.

This system is shown pictorially in Figure 4. In this form,
standard H∞ synthesis tools can be used to solve the prob-
lem directly.

H∞ synthesis can be further extended to include mod-
els with known uncertainty bounds. In this case, the prob-
lem becomes a robust performance problem for which
µ-synthesis tools can be applied. Finding a solution for
which µ < 1 guarantees robust monotonic convergence.
Note that solutions to these synthesis problems, with or
without uncertainty, are optimal for a given Q-filter. Recall
that the lowpass Q-filter affects the asymptotic error per-
formance, and finding the best tradeoff between conver-
gence rate and performance requires iterating over the
Q-filter bandwidth [70].

Alternative H∞ design methods focus on current-iter-
ation ILC formulations that include feedback action in
the learning. The approach presented in [56] restricts
learning to the feedback signal. Thus, the synthesis
method is to find the best feedback controller for ILC. In
[52], learning is also allowed directly on the error signal
as well as the feedback control. To solve this problem, a
two-step minimization procedure is presented in which
the learning function is designed first and the feedback
controller second. In [35], [54], an indirect linear fraction-
al transformation is used to place the current-iteration
ILC in standard form for H∞ synthesis. This approach
allows for the simultaneous design of the feedback con-
troller and learning function.

Quadratically Optimal Design
In Q-ILC, the learning functions are designed in the lift-
ed-system representation to minimize a quadratic next-
iteration cost criterion. Typically, the criteria used have
the form

Jj+1(uj+1) = eT
j+1QLQej+1 + uT

j+1RLQuj+1

+ δj+1uTSLQδj+1u,

where δj+1u �= uj+1 − uj, QLQ is an N × N positive-definite
matrix, and RLQ , SLQ are N × N positive-semidefinite
matrices. Minimizing the cost criterion with respect to uj+1
[100], [101] yields the optimal Q-filter

FIGURE 4 ILC iteration dynamics. By using the linear fractional
transformation representation, the ILC system is suitable for H∞
synthesis to minimize the error transmission from one iteration to
the next. This approach is useful for fast-convergence design.

−zP

Q Q

0

L

Ej −E∞Ej+1 −E∞

108 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2006

Qopt = (PTQLQP + RLQ + SLQ)−1(PTQLQP + SLQ)

and optimal learning function

Lopt = (PTQLQP + SLQ)−1PTQLQ.

The choice of weighting functions determines the per-
formance, convergence rate, and robustness of the Q-
ILC. For instance, substituting Qopt and Lopt into (16) to
obtain the converged error in terms of the weighting
function yields

e∞,opt =
[
I − P(PTQLQP + RLQ)−1PTQLQ

]
(yd − d).

Therefore, the weighting on the change in control SLQ ,
which affects how quickly the ILC converges, has no effect
on the asymptotic error. However, RLQ, the weighting on
the control, does. Note that if RLQ = 0, then the error con-
verges to zero for perfect tracking. RLQ �= 0 may be useful
for limiting the control action to prevent actuator saturation,
particularly for nonminimum phase systems [101]. This
weighting can also be used to decrease ILC sensitivity at
high frequencies to limit hardware wear and damage [101].

The above optimization problem can be solved in a differ-
ent way leading to a combination of optimal state feedback
control and current-iteration ILC [100], [102]. Although more
complicated than the above solution, this approach simulta-
neously yields the ILC and a feedback controller consistent
with the aims of the optimization. This approach is extended
in [103] to obtain an n-iteration predictive optimal solution.

Robustness of Q-ILC is examined in [22] and [42]. In [22]
a loop-shaping ILC is designed by selecting the weighting
matrices to meet robust stability, controller fragility, and
actuator amplitude require-
ments. In [42] constrained Q-ILC
and robust Q-ILC algorithms are
developed to optimize learning

for systems with input/output constraints, repeating and
nonrepeating disturbances, noise, and bounded-parameter
uncertainty. Similarly, a multiobjective noise-attenuation-
versus-convergence-rate design is presented in [104].

When the plant is unknown, an adaptive Q-ILC algo-
rithm can be used to identify the system online and
redesign the learning functions [60]. To reduce the memo-
ry requirements associated with the large matrix form of
the Q-ILC algorithm, low-order solutions to Q-ILC can be
obtained [105]. These low-order solutions are not specific
to the trial duration and can be extrapolated to trial dura-
tions of arbitrary length [106]. In addition to the LTI dis-
crete-time Q-ILC, optimal ILC solutions are available for
continuous-time, nonlinear Hamiltonian systems [107].

IMPLEMENTATION EXAMPLE:
MICROSCALE ROBOTIC DEPOSITION
To demonstrate the effectiveness of ILC on a real system, we
consider the microscale robotic deposition (µ-RD)
system shown in Figure 5 [6], [108]. µ-RD uses a
solid-freeform-fabrication manufacturing technique whereby
ink is extruded through a nozzle and deposited onto a sub-
strate [109], [110]. The highly thixotropic ink solidifies quickly
after exiting the nozzle, allowing the ink to span open gaps and
support high aspect-ratio features. A robot is used to position
the nozzle continuously in three-dimensional space to deposit
the ink. We are interested in improving the tracking perfor-
mance of the robot using ILC. Since the robot is Cartesian, the
axes are dynamically decoupled by design, and therefore can
be considered individually. Here we focus on a single axis,
since similar results can be obtained for the other two.

A swept-sine frequency response of the x axis (Figure 6)
is used to obtain the 1-kHz sampled dynamic model, as
shown in (27) at the bottom of the page. The nominal

FIGURE 5 (a) Photo of µ-RD system. (b) Schematic of motion system layout. The motion system is a standard H-drive or gantry robot with lin-
ear motors for x and y travel and a rotary motor and ballscrew for z travel. An electronic pressure regulator controls the ink extrusion flow rate.

y

z

x

Nozzle

Nozzle

y Axis

x Axis

z Axis

1 mm

(a) (b)

JUNE 2006 « IEEE CONTROL SYSTEMS MAGAZINE 109

GX(z) = 0.00083315(z + 0.9604)(z2 − 1.981z + 0.9918)(z2 − 1.874z + 0.9747)

(z − 0.9994)(z − 1)(z2 − 1.978z + 0.9894)(z2 − 1.738z + 0.8672)
. (27)

controller uses both a feedback control and a reference
feedforward control. The feedback controller (Figure 7)

CFBK(z) = 12.3359(z − 0.9874)(z − 0.9577)(z − 0.945)

(z − 0.9991)(z − 0.9174)(z − 0.9164)
,

is designed using loop-shaping for fast transient response.
The high-frequency gain of this controller is tuned to be as
high as possible without exciting resonant modes of the
motor and amplifier. The low-frequency gain is set suffi-

ciently high to compensate for friction and cogging forces
while minimizing the oscillatory response of the system to
reference changes. To further improve system response,
the reference feedforward controller

CFFD(z) = G−1
X (z)F(z)

uses approximate inversion of the identified model, where
F(z) is the lowpass filter with 100-Hz bandwidth given by

F(z) = 0.1568(z + 0.8093)

z2 − 1.25z + 0.5335
,

which makes CFFD causal. As an alternative control
strategy, we replace the reference feedforward controller
with a parallel-architecture ILC controller. The two
approaches are then compared against one another on a
typical reference trajectory.

Tuning
The design methods discussed in the “Design” section are
applicable to this system. However, we select the simplest
method, the tuned PD learning function. The rationale is
that if the simplest ILC algorithm outperforms a well-
tuned nominal control design, then effectiveness of the ILC
approach has been demonstrated. We choose a PD learn-
ing algorithm of the form

uj+1(k) = Q(q)[uj(k) + kpej(k + 1)

+ kd(ej(k + 1) − ej(k))], (28)

where Q(q) is a zero-phase, finite-impulse-response Gauss-
ian lowpass filter [6], [39]. Note that (28) is the PD law in
(26) with a Q-filter added for robustness. A position step
with trapezoidal velocity profile (see Figure 10) is used as
the sample trajectory for tuning the ILC parameters. The
maximum velocity and acceleration of this trajectory are
10 mm/s and 250 mm/s2, respectively.

We begin tuning with conservative gains kp = 1 and
kd = 10 and a Q-filter bandwidth of 20 Hz. Holding the
bandwidth constant, various gains are used, and the maxi-
mum and RMS errors are plotted versus iteration. For clar-
ity, only a subset of these gains is shown in Figure 8. From
these results, the gains kp = 2 and kd = 50 are selected.
Holding these gains fixed, a second set of trials is per-
formed with varying Q-filter bandwidths. Representative
results are shown in Figure 9, and the 40-Hz bandwidth fil-
ter is chosen as the best among the set.

Tracking Performance Results
Figure 10 shows the output trajectory of the x axis with and
without the ILC after 50 learning iterations. Using ILC, the
output is nearly indistinguishable from the reference. The
ILC reduces the maximum error by 85% and the RMS error
by 92% over the well-designed feedback and reference

FIGURE 6 Experimental frequency response and model of the µ-
RD x axis with sampling period Ts = 0.001 s. The experimental
data are obtained from 1–70 Hz. Outside this range nonlinearities
appear in the form of static friction at low frequencies and high sig-
nal-to-noise ratio at high frequencies. The frequency response
shows dominant double-integrator dynamics with structural reso-
nances at 16 Hz and 55 Hz.

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

0.1 1 10 100 500
−270

−180

−90

0

Frequency θ/(2πTs) (Hz)

P
ha

se
 (

de
g)

Data
Model

FIGURE 7 Frequency response of the feedback controller CFBK(z)

for the µ-RD x axis with sampling period Ts = 0.001 s. This con-
troller is designed to provide fast transient response without exciting
resonant modes of the motor and amplifier. The controller also
attempts to compensate for friction and cogging forces while mini-
mizing the oscillatory response of the system to reference changes.

10

30

40

20

M
ag

ni
tu

de
 (

dB
)

0.1 1 10 100 500
−90

0

90

Frequency θ/(2πTs) (Hz)

P
ha

se
 (

de
g)

110 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2006

feedforward controller com-
bination. Note that the learn-
ing function was obtained
with the simplest of ILC
approaches.

CONCLUDING REMARKS
This article surveyed the
major results in ILC analy-
sis and design over the past
two decades. Problems in
stabil i ty, performance,
learning transient behavior,
and robustness were dis-
cussed along with four
design techniques that have
emerged as among the
most popular. The content
of this survey was selected
to provide the reader with
a broad perspective of the
important ideas, potential,
and l imitations of ILC.
Indeed, the maturing field
of ILC includes many
results and learning algo-
rithms beyond the scope of
this survey. Though begin-
ning i ts third decade of
active research, the field of
ILC shows no signs of
slowing down.

Good learning transient
behavior was identified as
the practical stability condi-
tion, where good transient behavior was defined as
monotonic convergence. Furthermore, when robustness
is considered, model uncertainty leads to limitations on
the performance of LTI learning algorithms. An open
research topic is the formalization of the robustness-ver-
sus-performance tradeoff. Nonrepeating disturbances
and noise can be detrimental to the performance of ILC,
yet few algorithms or designs consider these effects in a
comprehensive manner amenable to implementation.
Finally, ILC researchers have not yet developed general
methods for using the information gained through ILC
training to aid in nonidentical, but similar, reference sig-
nals. Therefore, many opportunities exist for advance-
ment of theoretical and practical knowledge in the field.

The ILC field grew out of practical problems in robotics
and should continue to be motivated by real-world prob-
lems. One rapidly growing area where the authors see par-
ticularly strong opportunities for ILC is in micro- and
nano-manufacturing. The dynamics at these length scales are
nonlinear and uncertain, while accurate, real-time feedback

FIGURE 9 Transient behavior and asymptotic performance for Q-filter bandwidth tuning. These plots
show that the Q-filter has little effect on the convergence rate of the error, but instead primarily deter-
mines the magnitude of the converged error and stability of the system. Although increased bandwidth
improves the error, a bandwidth that is too high results in learning transients.

0 10 20 30 40 50
0

20

40

60

80

100

Iteration

M
ax

 E
rr

or
 (

μm
)

0 10 20 30 40 50
0

5

10

15

20

25

30

Iteration

(a) (b)

R
M

S
 E

rr
or

 (
μm

)

20 Hz
40 Hz
60 Hz

20 Hz
40 Hz
60 Hz

Learning
Transient

Learning
Transient

FIGURE 8 Transient behavior and asymptotic performance for PD gain tuning. While the gain combi-
nation kp = 5, kd = 20 has low asymptotic error, the learning transients do not converge monotoni-
cally like the others and, therefore, may not be a good choice of gains. The other three
combinations have nearly monotonic transients, but kp = 2, kd = 50 converges fastest with the low-
est final error.

0 10 20 30 40 50
0

20

40

60

80

100

Iteration

M
ax

 E
rr

or
 (

μm
)

Learning
Transient

0 10 20 30 40 50
0

5

10

15

20

25

30

Iteration

(a) (b)

R
M

S
 E

rr
or

 (
μm

) kp=1 kd=10
kp=2 kd=20
kp=2 kd=50
kp=5 kd=20

kp=1 kd=10
kp=2 kd=20
kp=2 kd=50
kp=5 kd=20

Learning
Transient

FIGURE 10 Tracking results with and without ILC on the μ-RD
system. The ILC is shown after 50 learning iterations, outperform-
ing the reference feedforward controller. Note that the ILC
response to the changing velocity is immediate, whereas the feed-
back and reference feedforward controllers show a lagged
response. The improved tracking provides lower overshoot and
shorter settling time.

0 0.1

1.05

0.4 0.42 0.44 0.46

0.95

1

0.2 0.3
Time (s)

P
os

iti
on

 (
m

m
)

0.4 0.5

Reference
Feedback Only
Feedback + Feedforward
Feedback + ILC

1

0.8

0.6

0.4

0.2

0

JUNE 2006 « IEEE CONTROL SYSTEMS MAGAZINE 111

becomes more challenging as length scales decrease. For
these applications, where precision levels are very high (≤1
nm), high bandwidth feedforward control becomes neces-
sary. The ability of ILC to use available measurements in an
offline learning manner, coupled with feedback controller
robustness, enables an effective tracking control solution.

ACKNOWLEDGMENTS
The authors would like to thank the National Science
Foundation (NSF), for support under DMI-0140466, an
NSF Graduate Research Fellowship, and the University of
Illinois at Urbana-Champaign Nano-CEMMS Center NSF
Award 0328162.

AUTHOR INFORMATION
Douglas A. Bristow received his B.S. from the Universi-
ty of Missouri at Rolla in 2001 and his M.S. from the
University of Illinois at Urbana-Champaign in 2003,
both in mechanical engineering. He is currently a Ph.D.
candidate in mechanical engineering at the University of
Illinois. In 2002 he was awarded the National Science
Foundation Graduate Fellowship. His research interests
include micro- and nano-manufacturing systems and
iterative learning control.

Marina Tharayil received the B.S. degree in mechanical
engineering from the University of Illinois, Chicago, in
1999. She received her M.S. (2001) and Ph.D. (2005) in
mechanical engineering from the University of Illinois at
Urbana-Champaign, where she was a National Science
Foundation Graduate Fellow. She is currently employed as
a research engineer at the Xerox Wilson Center for Research
and Technology in Webster, New York. Her research inter-
ests include repetitive and iterative learning control.

Andrew G. Alleyne (alleyne@uiuc.edu) received his
B.S.E. degree from Princeton University in mechanical
and aerospace engineering in 1989. He received his M.S.
and Ph.D. degrees in mechanical engineering in 1992
and 1994, respectively, from the University of California
at Berkeley. He joined the Department of Mechanical
and Industrial Engineering at the University of Illinois
at Urbana-Champaign (UIUC) in 1994 and is also
appointed in the Coordinated Science Laboratory of
UIUC. He currently holds the Ralph M. and Catherine
V. Fisher Professorship in the College of Engineering.
His research interests are a mix of theory and implemen-
tation with a broad application focus. He was awarded
the ASME Dynamics Systems and Control Division’s
Outstanding Young Investigator Award in 2003 and was
a Fulbright Fellow to the Netherlands in 2003 where he
held a visiting professorship in vehicle mechatronics at
TU Delft. He is an editor of Vehicle System Dynamics and
an associate editor of IEEE Control Systems Magazine. He
is a Fellow of the ASME and a Senior Member of the
IEEE. He can be contacted at the University of Illinois,
1206 West Green St., MC-244, Urbana, IL 61801 USA.

REFERENCES
[1] K.L. Moore, Iterative Learning Control for Deterministic Systems. London:
Springer-Verlag, 1993.
[2] K.J. Hunt, D. Sbarbaro, R. Zbikowski, and P.J. Gawthrop, “Neural net-
works for control systems—A survey,” Automatica, vol. 28, no. 6,
pp. 1083–112, 1992.
[3] G. Hillerstrom and K. Walgama, “Repetitive control theory and applica-
tions—a survey,” in Proc. 13th World Congress Vol.D: Control Design II, Opti-
mization, 1997, pp. 1–6.
[4] R.W. Longman, “Iterative learning control and repetitive control for engi-
neering practice,” Int. J. Contr., vol. 73, no. 10, pp. 930–954, 2000.
[5] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
robots by learning,” J. Robot. Syst., vol. 1, pp. 123–140, 1984.
[6] D.A. Bristow and A.G. Alleyne, “A manufacturing system for microscale
robotic deposition,” in Proc. Ame. Contr. Conf., 2003, pp. 2620–2625.
[7] H. Elci, R.W. Longman, M. Phan, J.-N. Juang, and R. Ugoletti, “Discrete
frequency based learning control for precision motion control,” in Proc. IEEE
Int. Conf. Syst., Man, Cybern., 1994, pp. 2767–2773.
[8] W. Messner, R. Horowitz, W.-W. Kao, and M. Boals, “A new adaptive
learning rule,” IEEE Trans. Automat. Contr., vol. 36, no. 2,
pp. 188–197, 1991.
[9] M. Norrlof, “An adaptive iterative learning control algorithm with exper-
iments on an industrial robot,” IEEE Trans. Robot. Automat., vol. 18, no. 2, pp.
245–251, 2002.
[10] D.-I. Kim and S. Kim, “An iterative learning control method with appli-
cation for CNC machine tools,” IEEE Trans. Ind. Applicat., vol. 32, no. 1, pp.
66–72, 1996.
[11] D. de Roover and O.H. Bosgra, “Synthesis of robust multivariable itera-
tive learning controllers with application to a wafer stage motion system,”
Int. J. Contr., vol. 73, no. 10, pp. 968–979, 2000.
[12] H. Havlicsek and A. Alleyne, “Nonlinear control of an electrohydraulic
injection molding machine via iterative adaptive learning,” IEEE/ASME
Trans. Mechatron., vol. 4, no. 3, pp. 312–323, 1999.
[13] F. Gao, Y. Yang, and C. Shao, “Robust iterative learning control with
applications to injection molding process,” Chem. Eng. Sci.,
vol. 56, no. 24, pp. 7025–7034, 2001.
[14] M. Pandit and K.-H. Buchheit, “Optimizing iterative learning control of
cyclic production processes with application to extruders,” IEEE Trans.
Contr. Syst. Technol., vol. 7, no. 3, pp. 382–390, 1999.
[15] S. Garimella and K. Srinivasan, “Application of iterative learning control
to coil-to-coil control in rolling,” IEEE Trans. Contr. Syst. Technol., vol. 6, no.
2, pp. 281–293, 1998.
[16] S.A. Saab, “A stochastic iterative learning control algorithm with appli-
cation to an induction motor,” Int. J. Contr., vol. 77, no. 2, pp. 144–163, 2004.
[17] A.D. Barton, P.L. Lewin, and D.J. Brown, “Practical implementation of a
real-time iterative learning position controller,” Int. J. Contr., vol. 73, no. 10,
pp. 992–999, 2000.
[18] W. Hoffmann, K. Peterson, and A.G. Stefanopoulou, “Iterative learning
control for soft landing of electromechanical valve actuator in camless
engines,” IEEE Trans. Contr. Syst. Technol., vol. 11, no. 2,
pp. 174–184, 2003.
[19] Y.Q. Chen and K.L. Moore, “A practical iterative learning path-
following control of an omni-directional vehicle,” Asian J. Contr., vol. 4, no. 1,
pp. 90–98, 2002.
[20] C. Mi, H. Lin, and Y. Zhang, “Iterative learning control of antilock brak-
ing of electric and hybrid vehicles,” IEEE Trans. Veh. Technol., vol. 54, no. 2,
pp. 486–494, 2005.
[21] D.R. Yang, K.S. Lee, H.J. Ahn, and J.H. Lee, “Experimental application
of a quadratic optimal iterative learning control method for control of wafer
temperature uniformity in rapid thermal processing,” IEEE Trans. Semicon-
duct. Manufact., vol. 16, no. 1, pp. 36–44, 2003.
[22] D. Gorinevsky, “Loop shaping for iterative control of batch processes,”
IEEE Contr. Syst. Mag., vol. 22, no. 6, pp. 55–65, 2002.
[23] M. Mezghani, G. Roux, M. Cabassud, M.V. Le Lann, B. Dahhou, and
G. Casamatta, “Application of iterative learning control to an exothermic
semibatch chemical reactor,” IEEE Trans. Contr. Syst. Technol., vol. 10, no. 6,
pp. 822–834, 2002.
[24] S. Kawamura and N. Sakagami, “Analysis on dynamics of underwater
robot manipulators basing on iterative learning control and time-scale trans-
formation,” in Proc. IEEE Int. Conf. Robot. Automat., pp. 1088–1094, 2002.
[25] C.V. Giessen, Q. Zou, and S. Devasia, “Inversion-based precision-
positioning of inertial reaction devices,” in Proc. Amer. Contr. Conf., 2004, pp.
3788–3793.

112 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2006

[26] Y. Chen, C. Wen, J.-X. Xu, and M. Sun, “High-order iterative learning
identification of projectile’s aerodynamic drag coefficient curve from radar
measured velocity data,” IEEE Tran. Contr. Syst. Technol., vol. 6, no. 4, pp.
563–570, 1998.
[27] C.T. Abdallah, V.S. Soulian, and E. Schamiloglu, “Toward “smart tubes”
using iterative learning control,” IEEE Trans. Plasma Sci., vol. 26, no. 3, pp.
905–911, 1998.
[28] M. Garden. “Learning control of actuators in control systems,” U.S.
Patent 3555252, 1971.
[29] M. Uchiyama, “Formation of high-speed motion pattern of a mechanical
arm by trial,” Trans. Soc. Instrument Contr. Engineers, vol. 14, no. 6, pp.
706–712, 1978.
[30] J.J. Craig, “Adaptive control of manipulators through repeated trials,” in
Proc. Amer. Contr. Conf, 1984., pp. 1566–1573.
[31] G. Casalino and G. Bartolini, “A learning procedure for the control of
movements of robotic manipulators,” in Proc. IASTED Symp. Robot. Automat.,
1984, pp. 108–111.
[32] S. Kawamura, F. Miyazaki, and S. Arimoto, “Iterative learning control
for robotic systems,” in Proc. Int. Conf. Ind. Electron., Contr. and Instrum, 1984.,
pp. 393–398.
[33] K.L. Moore and J.-X. Xu, “Editorial: Iterative learning control,” Int. J.
Contr., vol. 73, no. 10, 2000.
[34] “Iterative learning control” Asian J. Contr., vol. 4, no. 1, 2002.
[35] Z. Bien and J.-X. Xu, Iterative Learning Control: Analysis, Design, Integra-
tion and Applications. Boston: Kluwer, 1998.
[36] Y. Chen and C. Wen, Iterative Learning Control: Convergence, Robustness,
and Applications. London: Springer, 1999.
[37] J.-X. Xu and Y. Tan, Linear and Nonlinear Iterative Learning Control. Berlin:
Springer, 2003.
[38] K.L. Moore, M. Dahleh, and S.P. Bhattacharyya, “Iterative learning con-
trol: A survey and new results,” J. Robot. Syst., vol. 9, no. 5, pp. 563–594,
1992.
[39] R. Horowitz, “Learning control of robot manipulators,” Trans. ASME J.
Dyn. Syst. Meas. Control, vol. 115, no. 2B, pp. 402–411, 1993.
[40] M. Norrlof and S. Gunnarsson, “Experimental comparison of some clas-
sical iterative learning control algorithms,” IEEE Trans. Robot. Automat., vol.
18, no. 4, pp. 636–641, 2002.
[41] T. Kavli, “Frequency domain synthesis of trajectory learning controllers
for robot manipulators,” J. Robot. Syst., vol. 9, no. 5, pp. 663–680, 1992.
[42] J.H. Lee, K.S. Lee, and W.C. Kim, “Model-based iterative learning con-
trol with a quadratic criterion for time-varying linear systems,” Automatica,
vol. 36, no. 5, pp. 641–657, 2000.
[43] H. Elci, R.W. Longman, M.Q. Phan, J.-N. Juang, and R. Ugoletti, “Simple
learning control made practical by zero-phase filtering: Applications to
robotics,” IEEE Trans. Circuits Syst. I: Fundamental Theory Applicat., vol. 49,
no. 6, pp. 753–767, 2002.
[44] M. Norrlof and S. Gunnarsson, “Time and frequency domain conver-
gence properties in iterative learning control,” Int. J. Contr., vol. 75, no. 14,
pp. 1114–1126, 2002.
[45] Y. Chen and K.L. Moore, “An optimal design of PD-type iterative learn-
ing control with monotonic convergence,” in Proc. IEEE Int. Symp. Intelligent
Contr., 2002, pp. 55–60.
[46] K.L. Moore, Y. Chen, and V. Bahl, “Monotonically convergent iterative
learning control for linear discrete-time systems,” Automatica, vol. 41, no. 9,
pp. 1529–1537, 2005.
[47] H.-S. Lee and Z. Bien, “A note on convergence property of iterative
learning controller with respect to sup norm,” Automatica, vol. 33, no. 8,
pp. 1591–1593, 1997.
[48] D.H. Owens and G.S. Munde, “Universal adaptive iterative learning
control,” in Proc. IEEE Conf. Decision Contr., 1998, pp. 181–185.
[49] Y. Chen, C. Wen, and M. Sun, “Robust high-order P-type iterative learn-
ing controller using current iteration tracking error,” Int. J. Contr., vol. 68, no.
2, pp. 331–342, 1997.
[50] Y. Chen, Z. Gong, and C. Wen, “Analysis of a high-order iterative learn-
ing control algorithm for uncertain nonlinear systems with state delays,”
Automatica, vol. 34, no. 3, pp. 345–353, 1998.
[51] D.H. Owens and K. Feng, “Parameter optimization in iterative learning
control,” Int. J. Contr., vol. 76, no. 11, pp. 1059–1069, 2003.
[52] N. Amann, D.H. Owens, E. Rogers, and A. Wahl, “An H∞ approach to
linear iterative learning control design,” Int. J. Adaptive Contr. Signal Process-
ing, vol. 10, no. 6, pp. 767–781, 1996.
[53] J.-X. Xu, X.-W. Wang, and L.T. Heng, “Analysis of continuous iterative
learning control systems using current cycle feedback,” in Proc. Amer. Contr.

Conf., 1995, pp. 4221–4225.
[54] T.-Y. Doh, J.-H. Moon, K.B. Jin, and M.J. Chung, “Robust iterative learn-
ing control with current feedback for uncertain linear systems,” Int. J. Syst.
Sci., vol. 30, no. 1, pp. 39–47, 1999.
[55] D.H. Owens and G. Munde, “Error convergence in an adaptive iterative
learning controller,” Int. J. Contr., vol. 73, no. 10, pp. 851–857, 2000.
[56] C.J. Goh and W.Y. Yan, “An H∞ synthesis of robust current error feed-
back learning control,” J. Dyn. Syst. Meas. Control, vol. 118, no. 2, pp.
341–346, 1996.
[57] M.Q. Phan, R.W. Longman, and K.L. Moore, “Unified formulation of
linear iterative learning control,” Adv. Astronautical Sci.,
vol. 105, pp. 93–111, 2000.
[58] C.-T. Chen, Linear System Theory and Design. New York: Oxford Univ.
Press, 1999.
[59] U. Grenander and G. Szego, Toeplitz Forms and their Applications. Berke-
ley, CA: Univ. of California Press, 1958.
[60] J.A. Frueh and M.Q. Phan, “Linear quadratic optimal learning control
(LQL),” Int. J. Contr., vol. 73, no. 10, pp. 832–839, 2000.
[61] E. Rogers and D.H. Owens, Stability Analysis for Linear Repetitive Processes.
Berlin: Springer-Verlag, 1992.
[62] D.H. Owens, E. Rogers, and K.L. Moore, “Analysis of linear iterative
learning control schemes using repetitive process theory,” Asian J. Contr.,
vol. 4, no. 1, pp. 68–89, 2002.
[63] D.H. Owens and E. Rogers, “Comments on ‘On the equivalence of
causal LTI iterative learning control and feedback control’,” Automatica,
vol. 40, no. 5, pp. 895–898, 2004.
[64] P.B. Goldsmith, “Author’s reply to “Comments on ‘On the equivalence
of causal LTI iterative learning control and feedback control’”,” Automatica,
vol. 40, no. 5, pp. 899–900, 2004.
[65] E. Rogers, K. Galkowski, A. Gramacki, J. Gramacki, and D.H. Owens,
“Stability and controllability of a class of 2-D linear systems with dynamic
boundary conditions,” IEEE Trans. Circuits Syst. I: Fundamental Theory and
Applicat., vol. 49, no. 2, pp. 181–195, 2002.
[66] Z. Geng, J.D. Lee, R.L. Carroll, and L.H. Haynes, “Learning control sys-
tem design based on 2-D theory—An application to parallel link manipula-
tor,” in Proc. IEEE Int. Conf. Robot. Automat., 1990, pp. 1510–1515.
[67] J.E. Kurek and M.B. Zaremba, “Iterative learning control synthesis based
on 2-D system theory,” IEEE Trans. Autom. Contr., vol. 38, no. 1, pp. 121–125,
1993.
[68] Y. Fang and T.W.S. Chow, “2-D analysis for iterative learning controller
for discrete-time systems with variable initial conditions,” IEEE Trans. on
Circuits Syst. I: Fundamental Theory and Applica.t., vol. 50, no. 5, pp. 722–727,
2003.
[69] B. Bukkems, D. Kostic, B. de Jager, and M. Steinbuch, “Learning-based
identification and iterative learning control of direct-drive robots,” IEEE
Trans. Contr. Syst. Technol., vol. 13, no. 4, pp. 537–549, 2005.
[70] D. de Roover, “Synthesis of a robust iterative learning controller using
an H∞ approach,” in Proc. 35th IEEE Conf. Decision Contr., 1996, pp.
3044–3049.
[71] Y.-C. Huang and R.W. Longman, “Source of the often observed property
of initial convergence followed by divergence in learning and repetitive con-
trol,” Advances Astronaut. Sci., vol. 90, no. 1, pp. 555–572, 1996.
[72] R.W. Longman and Y.-C. Huang, “The phenomenon of apparent con-
vergence followed by divergence in learning and repetitive control,” Intell.
Automat. Soft Comput., vol. 8, no. 2, pp. 107–128, 2002.
[73] A. Sala and P. Albertos, “Open-loop iterative learning control,” in Iterative
Identification and Control, A. Sala and P. Albertos, Eds. London: Springer, 2002.
[74] Q. Hu, J.-X. Xu, and T.H. Lee, “Iterative learning control design for
smith predictor,” Syst. Contr. Lett., vol. 44, no. 3, pp. 201–210, 2001.
[75] J.-X. Xu, T.H. Lee, J. Xu, Q. Hu, and S. Yamamoto, “Iterative learning
control with smith time delay compensator for batch processes,” in Proc.
Amer. Contr. Conf., 2001, pp. 1972–1977.
[76] M. Sun and D. Wang, “Iterative learning control design for uncertain
dynamic systems with delayed states,” Dynamics Control, vol. 10, no. 4, pp.
341–357, 2000.
[77] K.-H. Park, Z. Bien, and D.-H. Hwang, “Design of an iterative learning
controller for a class of linear dynamic systems with time delay,” in IEE
Proc.: Contr. Theory Applicat., vol. 145, no. 6, pp. 507–512, 1998.
[78] M. Norrlof, “Iterative learning control: Analysis, design, and experi-
ments,” Ph.D. dissertation, Linkoping Studies Sci. Technol., Linkopings Uni-
versitet, Linkoping, Sweden, 2000.
[79] S.S. Saab, “A discrete-time stochastic learning control algorithm,” IEEE
Trans. Automat. Contr., vol. 46, no. 6, pp. 877–887, 2001.

JUNE 2006 « IEEE CONTROL SYSTEMS MAGAZINE 113

[80] S.S. Saab, “On a discrete-time stochastic learning control algorithm,”
IEEE Trans. Automat. Contr., vol. 46, no. 8, pp. 1333–1336, 2001.
[81] S.S. Saab, “Stochastic P-type/D-type iterative learning control algo-
rithms,” Int. J. Contr., vol. 76, no. 2, pp. 139–148, 2003.
[82] H.-S. Lee and Z. Bien, “Study on robustness of iterative learning control
with non-zero initial error,” Int. J. Contr., vol. 64, no. 3, pp. 345–359, 1996.
[83] K.-H. Park, Z. Bien, and D.-H. Hwang, “Study on the robustness of a
PID-type iterative learning controller against initial state error,” Int. J. Syst.
Sci., vol. 30, no. 1, pp. 49–59, 1999.
[84] K.-H. Park and Z. Bien, “A generalized iterative learning controller
against initial state error,” Int. J. Contr., vol. 73, no. 10, pp. 871–881, 2000.
[85] M. Sun and D. Wang, “Iterative learning control with initial rectifying
action,” Automatica, vol. 38, no. 7, pp. 1177–82, 2002.
[86] G. Heinzinger, D. Fenwick, B. Paden, and F. Miyazaki, “Stability of
learning control with disturbances and uncertain initial conditions,” IEEE
Trans. Automat. Contr., vol. 37, no. 1, pp. 110–14, 1992.
[87] S. Arimoto, “Mathematical theory of learning with applications to robot
control,” in Proc. Adaptive and Learning Systems: Theory and Applications, 1986,
pp. 388–379.
[88] J.E. Hauser, “Learning control for a class of nonlinear systems,” in Proc.
26th IEEE Conf. Decision Contr., 1987, pp. 859–860.
[89] C.-J. Chien and J.-S. Liu, “P-type iterative learning controller for robust
output tracking of nonlinear time-varying systems,” Int. J. Contr., vol. 64, no.
2, pp. 319–334, 1996.
[90] C.-C. Cheah and D. Wang, “Learning impedance control for robotic
manipulators,” IEEE Trans. Robot. Automat., vol. 14, no. 3, pp. 452–465, 1998.
[91] D. Wang, “On D-type and P-type ILC designs and anticipatory
approach,” Int. J. Contr., vol. 73, no. 10, pp. 890–901, 2000.
[92] J.-X. Xu and Y. Tan, “Robust optimal design and convergence properties
analysis of iterative learning control approaches,” Automatica, vol. 38, no. 11,
pp. 1867–1880, 2002.
[93] K.L. Moore, “An observation about monotonic convergence in discrete-
time, P-type iterative learning control,” in Proc. IEEE Int. Symp. Intell. Contr.,
2001, pp. 45–49.
[94] H.-S. Lee and Z. Bien, “Robustness and convergence of a PD-type itera-
tive learning controller,” in Iterative Learning Control: Analysis, Design, Inte-
gration and Applications, Z. Bien and J.-X. Xu, Eds., Boston: Kluwer, 1998.
[95] G.F. Franklin, J.D. Powell, and A. Emami-Naeini, Feedback Control of
Dynamic Systems. New Jersey: Prentice Hall, 2002.
[96] K. Kinosita, T. Sogo, and N. Adachi, “Iterative learning control using
adjoint systems and stable inversion,” Asian J. Contr., vol. 4, no. 1, pp. 60–67,
2002.
[97] T. Sogo, “Stable inversion for nonminimum phase sampled-data sys-
tems and its relation with the continuous-time counterpart,” in Proc. 41st
IEEE Conf. Decision Contr., 2002, pp. 3730–3735.
[98] J. Ghosh and B. Paden, “Pseudo-inverse based iterative learning control
for nonlinear plants with disturbances,” in Proc. 38th IEEE Conf. Decision
Contr., 1999, pp. 5206–5212.
[99] K.S. Lee, S.H. Bang, and K.S. Chang, “Feedback-assisted iterative learn-
ing control based on an inverse process model,” J. Process Contr., vol. 4, no. 2,
pp. 77–89, 1994.
[100] N. Amann, D.H. Owens, and E. Rogers, “Iterative learning control for
discrete-time systems with exponential rate of convergence,” IEE Proc.: Con-
trol Theory Applicat., vol. 143, no. 2, pp. 217–224, 1996.
[101] S. Gunnarsson and M. Norrlof, “On the design of ILC algorithms using
optimization,” Automatica, vol. 37, no. 12, pp. 2011–2016, 2001.
[102] N. Amann, D.H. Owens, and E. Rogers, “Iterative learning control for
discrete time systems using optimal feedback and feedforward actions,” in
Proc. 34th IEEE Conf. Decision Contr., 1995, pp. 1696–1701.
[103] N. Amann, D.H. Owens, and E. Rogers, “Predictive optimal iterative
learning control,” Int. J. Contr., vol. 69, no. 2, pp. 203–226, 1998.
[104] R. Tousain, E. Van Der Meche, and O. Bosgra, “Design strategy for iter-
ative learning control based on optimal control,” in Proc. 40th IEEE Conf.
Decision Contr., 2001, pp. 4463–4468.
[105] B.G. Dijkstra and O.H. Bosgra, “Convergence design considerations of
low order Q-ILC for closed loop systems, implemented on a high precision
wafer stage,” in Proc. 41st IEEE Conf. Decision Contr., 2002, pp. 2494–2499.
[106] B.G. Dijkstra and O.H. Bosgra, “Extrapolation of optimal lifted system
ILC solution, with application to a waferstage,” in Proc. Amer. Contr. Conf.,
2002, pp. 2595–2600.
[107] K. Fujimoto and T. Sugie, “Iterative learning control of Hamiltonian
systems: I/O based optimal control approach,” IEEE Trans. Automat. Contr.,
vol. 48, no. 10, pp. 1756–1761, 2003.

[108] D. Bristow, A. Alleyne, and D. Zheng, “Control of a microscale deposi-
tion robot using a new adaptive time-frequency filtered iterative learning
control,”in Proc. Amer. Contr. Conf., 2004, pp. 5144–5149.
[109] J. Cesarano, R. Segalman, and P. Calvert, “Robocasting provides mold-
less fabrication from slurry deposition,” Ceram. Industry, pp. 94–102, 1998.
[110] Q. Li and J.A. Lewis, “Nanoparticle inks for directed assembly of three-
dimensional periodic structures,” Adv. Mater., vol. 15, no. 19,
pp. 1639–1643, 2003.
[111] P.B. Goldsmith, “On the equivalence of causal LTI iterative learning
control and feedback control,” Automatica, vol. 38, no. 4, pp. 703–708, 2002.
[112] P.B. Goldsmith, “The fallacy of causal iterative learning control,”in Proc.
40th IEEE Conf. Decision Contr., 2001, pp. 4475–4480.
[113] F. Padieu and R. Su, “H∞ approach to learning control systems,” Int. J.
Adaptive Contr. Signal Processing, vol. 4, no. 6, pp. 465–474, 1990.
[114] C.J. Goh, “A frequency domain analysis of learning control,” Trans.
ASME J. Dyn. Syst. Meas. Control, vol. 116, no. 4, pp. 781–786, 1994.
[115] L.M. Hideg, “Stability of linear time varying multiple input multiple
output continuous time learning control systems: A sufficient condition,” in
Proc. 1994 IEEE Int. Symp. Intell. Contr., Aug. 16–18 1994, 1994, pp. 285–290.
[116] M. Togai and O. Yamano, “Analysis and design of an optimal learning
control scheme for industrial robots: A discrete system approach,” in Proc.
24th IEEE Conf. Decision Contr., 1985, pp. 1399–1404.
[117] T.-Y. Kuc, J.S. Lee, and K. Nam, “Iterative learning control theory for a
class of nonlinear dynamic systems,” Automatica, vol. 28, no. 6,
pp. 1215–1221, 1992.
[118] Y.A. Jiang, D.J. Clements, and T. Hesketh, “Betterment learning control
of nonlinear systems,” in Proc. IEEE Conf. Decision Contr., 1995, pp.
1702–1707.
[119] T.-J. Jang, C.-H. Choi, and H.-S. Ahn, “Iterative learning control in
feedback systems,” Automatica, vol. 31, no. 2, pp. 243–248, 1995.
[120] J. Ghosh and B. Paden, “A pseudoinverse-based iterative learning con-
trol,” IEEE Trans. Automat. Contr., vol. 47, no. 5, pp. 831–837, 2002.
[121] R. Horowitz, W. Messner, and J.B. Moore, “Exponential convergence of
a learning controller for robot manipulators,” IEEE Trans. Automat. Contr.,
vol. 36, no. 7, pp. 890–894, 1991.
[122] T.H. Lee, J.H. Nie, and W.K. Tan, “Developments in learning control
enhancements for nonlinear servomechanisms,” Mechatronics, vol. 5, no. 8,
pp. 919–936, 1995.
[123] J.-X. Xu, B. Viswanathan, and Z. Qu, “Robust learning control for
robotic manipulators with an extension to a class of non-linear systems,” Int.
J. Contr., vol. 73, no. 10, pp. 858–870, 2000.
[124] T. Sugie and T. Ono, “Iterative learning control law for dynamical sys-
tems,” Automatica, vol. 27, no. 4, pp. 729–732, 1991.
[125] T.-J. Jang, H.-S. Ahn, and C.-H. Choi, “Iterative learning control for
discrete-time nonlinear systems,” Int. J. Syst. Sci., vol. 25, no. 7, pp.
1179–1189, 1994.
[126] S.S. Saab, “Discrete-time learning control algorithm for a class of non-
linear systems,” in Proc. Amer. Contr. Conf., 1995, pp. 2739–2743.
[127] J.-X. Xu, “Analysis of iterative learning control for a class of nonlinear
discrete-time systems,” Automatica, vol. 33, no. 10, pp. 1905–1907, 1997.
[128] D. Wang, “Convergence and robustness of discrete time nonlinear sys-
tems with iterative learning control,” Automatica, vol. 34, no. 11,
pp. 1445–1448, 1998.
[129] C.-J. Chien, “A discrete iterative learning control for a class of nonlin-
ear time-varying systems,” IEEE Trans. Automat. Contr., vol. 43, no. 5, pp.
748–752, 1998.
[130] M. Sun and D. Wang, “Robust discrete-time iterative learning control:
Initial shift problem,” in Proc. IEEE Conf. Decision Contr., 2001, pp. 1211–1216.
[131] M. Sun and D. Wang, “Analysis of nonlinear discrete-time systems
with higher-order iterative learning control,” Dynamics Control, vol. 11, no. 1,
pp. 81–96, 2001.
[132] Y.-T. Kim, H. Lee, H.-S. Noh, and Z.Z. Bien, “Robust higher-order iter-
ative learning control for a class of nonlinear discrete-time systems,” in Proc.
IEEE Int. Conf. Syst. Man Cybern., 2003, pp. 2219–2224.
[133] D.-Y. Pi and K. Panaliappan, “Robustness of discrete nonlinear systems
with open-closed-loop iterative learning control,” in Proc. 2002 Int. Conf.
Machine Learning Cybern., 2002, pp. 1263–1266.
[134] M. Sun and D. Wang, “Initial shift issues on discrete-time iterative
learning control with system relative degree,” IEEE Trans. Automat. Contr.,
vol. 48, no. 1, pp. 144–148, 2003.
[135] R. Longman, “Designing iterative learning and repetitive controllers,”
in Iterative Learning Control: Analysis, Design, Integration and Applications, Z.
Bien and J.-X. Xu, Eds. Boston: Kluwer, 1998.

114 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2006

